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� Abstract. The framework for deriving interfacial dielectric profiles from bound charge distributions is es-
tablished and applied to molecular dynamics simulations of water at hydrophobic and hydrophilic surfaces. In
conjunction with a modified Poisson-Boltzmann equation, the trend of experimental double layer capacitances is
well reproduced. We show that the apparent Stern layer can be understood in terms of the continuous dielectric
profile of pure water.

One of the most salient properties of water is its high
molecular polarity. As a result, electrostatic interactions
in aqueous environments are drastically modified with
profound implications for the behavior of ions, proteins
and membranes in solution [1]. Experiments and simu-
lations have shown that the dielectric function of homo-
geneous water exhibits two singularities for wave vectors
at molecular length scales, indicating anomalous screen-
ing effects in bulk [2]. To what extent interfacial water
exhibits similar anomalies is less clear [3]. Experimental
capacitance studies have led Stern to propose a model
for an aqueous interface where the dielectric constant is
reduced over a nanoscopic width [4]. Whether this layer
reflects ionic or rather intrinsic water properties is not
specified in the original Stern model. However, recent
terahertz spectroscopy experiments have shown that the
dielectric properties of water itself are modified at inter-
faces within a layer of molecular size [5]. Without calcu-
lating the dielectric profile, it was shown how the Stern
layer contribution to the capacitance emerges from a non-
local dielectric function [6], also for non-linear response
[7]. Using approximate statistical mechanical methods,
it has been shown that the lowering of the interfacial ca-
pacitance for a dipolar fluid is due to molecular ordering
and orientation [8]. However, a method for calculating
dielectric profiles from the distribution of partial charge
on the water molecules, as well as the profiles themselves,
have been lacking so far.

Detailed knowledge of the interfacial dielectric behav-
ior of water is a prerequisite for correct modeling of ion
distributions [9] and double layer interactions [10], as well
as electrokinetic effects. Similarly, the interfacial dielec-
tric function is a key ingredient to solvent-implicit ap-
proaches towards protein and macromolecular modeling
[11]. Control over the interfacial dielectric constant is
also crucial for a number of industrial applications, in-
cluding high power and long duration energy storage de-

vices [12]. Finally, dielectric effects are one contribution
to the hydration repulsion between polar surfaces [13, 1].
The dielectric properties of interfacial water have been
studied using both simulations and analytic approaches.
One shortcoming of previous analytic approaches is that
the water bulk behavior including the above-mentioned
anomaly is typically not accounted for [14, 15]. At the
same time, previous simulations with explicit water and
ions could not be analyzed within the existing theoret-
ical framework. One reason for the complexity is the
appearance of higher order multipole moments, which
are particularly essential at interfaces [16].

The purpose of this Letter is threefold: first, we de-
velop the theoretical framework to extract both paral-
lel and perpendicular interfacial dielectric response func-
tions from the bound charge distribution. Quadrupole
and higher order moments, which were neglected previ-
ously [17], turn out to be crucial. Second, we extract
the dielectric response functions using large-scale molec-
ular dynamics (MD) simulations of water and demon-
strate that the perpendicular dielectric function exhibits
singularities like the non-local bulk dielectric function,
whereas the parallel function is smooth. The remarkable
differences between hydrophobic and hydrophilic surfaces
can be quantified in terms of a dielectric dividing surface,
defined similarly to the Gibbs dividing surface. Third, we
use a modified Poisson-Boltzmann equation to show that
the experimental double layer capacitance can be largely
understood by the dielectric profile of pure water.

� Dielectric Linear Response. A local change in dis-
placement field D (r) is related to a change in electric
field E (r′) via the non-local dielectric tensor εnl (r, r

′),
∆D (r) = ε0

∫
εnl (r, r

′) ·∆E (r′) dr′ , with ε0 the per-
mittivity of vacuum. For a homogeneous electric field,
∆E (r) = ∆E, which holds for the averaged tangential
field component at planar interfaces as will be discussed
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Figure 1: Snapshots from the simulations of the hydrophilic
(a) and hydrophobic surface (b) and corresponding water den-
sity profiles n (z) without external electric field (c-d). All
graphs have the same z scale, with z = 0 fixed at the out-
ermost carbon atoms for the hydrophobic and at the oxygen
atoms of the hydroxyl groups for the hydrophilic surface.

below, the response function becomes local,

∆D (r) = ε0ε (r) ·∆E, (1)

with ε (r) =
∫
εnl (r, r

′) dr′. This makes the usual lo-
cality assumption εnl (r, r

′) = ε (r) δ (r − r′) superflu-
ous. The inverse response function ε−1

nl (r, r′) is defined
by ∆E (r) = ε−1

0

∫
ε−1
nl (r, r′) · ∆D (r′) dr′ [6] and be-

comes local when D (r) is uniform, which holds for the
averaged perpendicular component at a planar interface,

∆E (r) = ε−1
0 ε−1 (r) ·∆D, (2)

with ε−1 (r) the inverse dielectric function.
� Fluctuation-Dissipation Relation. The electric
field is separated into the displacement field D (r), as-
sociated with the monopole density, and the polariza-
tion m (r), generated by all higher multipole moments,
ε0E (r) = D (r) − m (r). Defining the total polariza-
tion in a volume V by M =

∫
V m (r) dr, the change

in polarization upon application of an external homoge-
neous electric field F , defined as ∆m (r) = ⟨m (r)⟩F −
⟨m (r)⟩0, is given by [17, 18]

∆m =

∫
(m− ⟨m⟩0) exp [−β (U −M · F )]dX∫

exp [−β (U −M · F )]dX
, (3)

where ⟨. . . ⟩F and ⟨. . . ⟩0 denote ensemble averages in the
presence and absence of F , respectively, β is the inverse
thermal energy and dX denotes phase space integration.
For small F , Eq. (3) can be linearized to yield

∆m (r) ≈ β [⟨m (r)M⟩0 − ⟨m (r)⟩0⟨M⟩0] · F . (4)

� Slab Geometry. We consider a planar interfacial
system with translational invariance in x and y direction,
so all averaged fields and observables only depend on z.

The dielectric tensor is diagonal with only two unique
components, parallel and perpendicular to the surface.
Maxwell’s equation ∇×E (z) = 0 implies ∆E∥ (z) = E∥,
which shows that the tangential electric field is constant
on average, i.e., neglecting field fluctuations due to, e.g.,
local water orientations. Eq. (1) applies to this situation,
yielding the parallel dielectric response

ε∥ (z) = 1 +
∆m∥ (z)

ε0E∥
. (5)

The homogeneous field F∥ in Eq. (4) corresponds to E∥
in the parallel case. Combining Eqs. (4) and (5) gives

ε∥ (z) ≈ 1+ε−1
0 β

[
⟨m∥ (z)M∥⟩0 − ⟨m∥ (z)⟩0⟨M∥⟩0

]
. (6)

For vanishing monopole density we have ∇ · D (z) = 0
and thus the averaged perpendicular displacement field
is constant, ∆D⊥ (z) = D⊥. To this case, Eq. (2) applies
and the perpendicular dielectric response follows as

ε−1
⊥ (z) = 1− ∆m⊥ (z)

D⊥
. (7)

The field F⊥ is associated with D⊥/ε0. Combining Eqs.
(4) and (7) yields

ε−1
⊥ (z) ≈ 1− ε−1

0 β [⟨m⊥ (z)M⊥⟩0 − ⟨m⊥ (z)⟩0⟨M⊥⟩0] .
(8)

Whereas ε∥ (z) is irrelevant for planar systems with lat-
eral translational invariance, it becomes crucial for the
dielectric response of e.g. a point charge at an interface.
� Simulations & Results. We perform MD simu-
lations (GROMACS) of pure SPC/E water in contact
with two diamond surface types, one terminated with hy-
droxyl groups (surface coverage xOH = 1/4 in the nota-
tion of [19]), giving a hydrophilic surface, and one termi-
nated with hydrogen atoms, giving a hydrophobic surface
(see [19] for simulation details). Snapshots of the simu-
lations are shown in Fig. 1, together with the number
density profiles. Notably, the water density peak at the
hydrophilic surface is significantly higher than at the hy-
drophobic surface. We calculate the dielectric response
in two distinct ways: First, from polarization fluctua-
tions without an external electric field using Eqs. (6)
and (8); and second, directly from Eqs. (5) and (7) at
a finite field F (for which the response is a posteriori
verified to be linear). To get the excess quantities ∆E
and ∆m, the respective values at zero external field are
subtracted.

The parallel dielectric profile ε∥ (z) is shown in Fig.
2 for a hydrophilic (a) and a hydrophobic surface (b).
Solid lines depict results at vanishing external field using
Eq. (6), while dashed lines follow from Eq. (5) for an
external electric field of F∥ = E∥ = 0.05 V/nm. The
parallel polarization profile m∥ (z) is calculated directly
from the boundary charge created by introducing vir-
tual cuts in the simulation box, which is shown to be
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equivalent to a summation over all multipole moments
[18]. The bulk dielectric response is close to the literature
value for SPC/E water of εbulk = 71 [20], and the profiles
from fluctuations and applied field coincide excellently.
Clearly, the dielectric profiles are roughly proportional to
the density profiles. This is typically assumed in coarse-
grained solvation models [11], but strictly valid only for
non-interacting systems. Interestingly however, the di-
electric peak is higher at the hydrophobic surface com-
pared to the hydrophilic surface, in contrast to the den-
sity, which shows the opposite trend. This disparity indi-
cates that, although there are more polarizable molecules
available in the first density peak at the hydrophilic sur-
face, their response to an electric field is more restricted
than at the hydrophobic surface. This points to a funda-
mental difference in dielectric response between the two
surfaces, which we will get back to later. Shown as dotted
lines are the dipolar dielectric contributions, calculated
using only the dipole density ∆P1 (z) instead of the total
polarization ∆m (z), which agree perfectly with the full
ε∥ (z) profiles, showing that quadrupole and higher order
contributions are negligible for the parallel response.

The inverse perpendicular dielectric profile is shown
in Fig. 2 at a hydrophilic (c) and a hydrophobic sur-
face (d). Here we use E⊥ (z) to calculate m⊥ (z) and
M⊥, where E⊥ (z) = E⊥ (0) +

∫ z

0
ρ (z′) /ε0 dz′, with ρ

the total charge density. Solid lines show the response
calculated from fluctuations using Eq. (8), dashed curves
represent the response to an applied electric field of
±0.5 V/nm from Eq. (7). Again, both computational
methods agree, thus confirming our formalism. Strik-
ingly, ε−1

⊥ (z) passes through zero several times, meaning
that ε⊥ (z) exhibits multiple singularities and extensive
negative parts. This overscreening behavior is reminis-
cent of the non-local bulk dielectric function [2], which
evidently dominates the dielectric response perpendicu-
lar to the surface, but not the parallel one. In contrast
with the parallel case, the dipolar dielectric contribu-
tions (dotted lines) deviate from the full ε−1

⊥ (z) profiles,
showing that here quadrupole and higher order terms are
crucial. This vividly illustrates shortcomings of previous
formulations [17]. Although ε−1

⊥ (z) must be related to
the molecular ordering, there is no direct correlation be-
tween ε−1

⊥ (z) and the electric field stemming from the
oriented molecules [18].

� Dielectric Dividing Surface. To interpret and ap-
ply our simulation results in a transparent fashion, we
introduce the dielectric dividing surface position zDDS,
in analogy to the Gibbs dividing surface defined by

zDDS = zv +

∫ zl

zv

f (zl)− f (z)

f(zl)− f(zv)
dz (9)

where zv and zl are positions in the vapor and liq-
uid phase, respectively. For the Gibbs dividing surface
zGDS, f (z) is the fluid number density n(z), and we
obtain zGDS

phob = 0.22 nm and zGDS
phil = 0.07 nm, reflect-
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Figure 2: The parallel dielectric function ε∥ next to a hy-
drophilic (a) and a hydrophobic diamond (b) calculated from
polarization fluctuations (Eq. (6), solid lines) and for an ex-
ternal electric field E∥ = 0.05 V/nm (Eq. (5), dashed lines).
The inverse perpendicular dielectric function ε−1

⊥ next to a
hydrophilic (c) and a hydrophobic diamond (d) from fluctu-
ations (Eq. (8), solid lines) and for an external electric field
D⊥/ε0 = ±0.5 V/nm (Eq. (7), dashed lines). The dotted
lines denote the dipole contribution for an applied external
field.

ing the well-known tendency for water to form a pro-
nounced depletion layer at hydrophobic surfaces [19]. For
the dielectric dividing surfaces zDDS

∥ and zDDS
⊥ we take

f (z) = ε∥ (z), and f (z) = ε−1
⊥ (z), respectively, giving

zDDS
∥phil = 0.09 nm, zDDS

∥phob = 0.08 nm, zDDS
⊥phil = 0.10 nm

and zDDS
⊥phob = 0.12 nm. The width of the perpendicular

dielectric dispersion as defined in Ref. [7] gives 0.08 nm
and 0.12 nm relative to z = 0 for our hydrophilic and
hydrophobic profiles respectively, close to zDDS

⊥ . How-
ever, using zDDS

⊥ as the position where the permittivity
changes stepwise to the bulk value, as an approxima-
tion of ε−1

⊥ (z), always reproduces the voltage difference
between zl and zv obtained from ε−1

⊥ (z), which is not
guaranteed when using the definition of Ref. [7]. For
the dielectric shifts, defined as δ∥ = zDDS

∥ − zGDS and

δ⊥ = zDDS
⊥ − zGDS, we obtain δphil∥ = 0.02 ± 0.01 nm

and δphil⊥ = 0.03 ± 0.015 nm at the hydrophilic and

δphob∥ = −0.14 ± 0.01 nm and δphob⊥ = −0.10 ± 0.01 nm

at the hydrophobic surface, showing a remarkable differ-
ence between the two surfaces: the dielectric interface is
shifted towards the hydrophobic surface, δphob < δphil,
indicating that water at this surface is a “better dielec-
tric” than at the hydrophilic surface, when the reference
is taken as zGDS. However, this difference is more than
compensated by the depletion layer, which is larger at the
hydrophobic surface, so that zDDS

⊥phob > zDDS
⊥phil. In the fol-

lowing, we compare different ways of incorporating these
dielectric effects into a coarse-grained model.

� Poisson-Boltzmann (PB) Modeling. We consider
a monovalent salt solution adjacent to a charged pla-
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nar surface. Inspired by Eq. (2), we assume local-
ity in the form ε0E⊥ (z) = ε−1

⊥ (z)D⊥ (z), which is a
good approximation when D⊥ (z) varies slowly, i.e. at
low salt concentration and low surface charge density
σ0 [6]. Taking the divergence of E⊥ (z) and inserting
∇zD⊥ (z) = P0 (z) = −2ec0 sinh [βeψ (z)] exp [−µ (z)],
with ψ (z) the electrostatic potential and c0 the bulk salt
concentration, leads to the modified PB equation,

ε0∇2
zψ = 2ec0 sinh [βeψ] exp [−µ]ε−1

⊥ −D⊥∇zε
−1
⊥ , (10)

where we used ∇zψ (z) = −E⊥ (z). The potential µ (z)
contains all non-electrostatic surface-ion contributions
such as steric and solvation effects. The displacement
field follows as D⊥ (z) =

∫ z

0
P0 (z

′) dz′, making Eq. (10)
an integro-differential equation [15, 7].

Dielectric interface effects are most crucial for the
surface capacitance, defined in differential form as C =
dσ0/dψ0 for σ0 → 0, where ψ0 = ψ(z = 0) is the surface
potential. Fig. 3 (a) shows C calculated from Eq. (10)
for different scenarios. For constant ε−1

⊥ (z) = ε−1
bulk with

εbulk = 71 and µ (z) = 0 (black solid line), the calcu-
lated C grossly overestimates experimental data (black
circles, for various surfaces and systems; see [18] for ref-
erences), an observation that led Stern to postulate a
low-dielectric surface layer [4]. Adding a generic soft ion
repulsion, µ (z) = α exp [1− z/λ], with λ of the order
of the ionic radius, λ = 0.15 nm, and α = 1, but keep-
ing ε−1

⊥ (z) = ε−1
bulk, does not improve the situation much

(black dotted line), irrespective of the precise values of λ
and α. On the other hand, the capacitance calculated us-
ing the full profiles ε−1

⊥ (z) (solid lines) agrees much bet-
ter with experiments. Results of the sharp-kink approx-
imation, ε−1

⊥ (z) = ε−1
bulk for z > zDDS

⊥ and ε−1
⊥ (z) = 1

otherwise (broken lines), are very close to the full pro-
file capacitance, explaining the success of the Stern layer
concept and other, more refined expressions based on the
width of the dielectric dispersion (for low salt concentra-
tion) [6, 7]. Adding the soft ion repulsion µ (z) (dotted
line, only in conjunction with the sharp-kink approxima-
tion) leads to an excellent match with experiments even
at high salt concentration. Note that experimentally, the
capacitance increases only slightly with surface polarity
[12, 18], in line with our findings at hydrophobic and
hydrophilic surfaces (red and blue lines in Fig. 3 (a),
respectively) and rationalized by the above-mentioned
weak dominance of density depletion over interfacial di-
electric effects on both surface types. The capacitance at
very low salt concentration corresponds well to the value
of 3.5 µF/cm2 obtained for pure water at a platinum
interface [21], despite the different water model (TIP4P
and BJH) used in that study.

Note that the surface charge position at z = 0 corre-
sponds to the outermost carbon layer on the hydrophobic
and to the oxygen layer on the hydrophilic surface, a cru-
cial detail motivated by surface chemical considerations
[18]. Fig. 3 (b) shows the capacitance when the charge is
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Figure 3: Double layer capacitance from Eq. (10) in the limit
σ0 → 0, using ε−1

⊥ (z) = ε−1
bulk (black lines), ε−1

⊥ (z) from MD
(solid colored lines), and the sharp-kink-approximation using
zDDS
⊥ (broken lines). Blue lines correspond to hydrophilic, red
lines to hydrophobic surfaces. Circles denote experimental
data [18]. (a) Surface charge σ0 located at z = 0. The dotted
lines include a soft ion repulsion µ (z) = α exp [1− z/λ] and
use ε−1

bulk (black) or the sharp-kink approximation (red and
blue). (b) Surface charge displaced into the substrate by a =
0.1 nm with ε−1

⊥ = 1 inside the substrate, using ε−1
⊥ (z) = ε−1

bulk

(solid line) and the sharp-kink approximation (dashed lines).

displaced over a distance a = 0.1 nm into the substrate,
using ε−1

⊥ (z) = 1 for z < 0. Solid lines are calculated
using ε−1

⊥ (z) = ε−1
bulk for z > 0 and dashed lines using

the sharp-kink approximation. Clearly, the dependence
of the capacitance on the concentration deviates from the
experimental trend in both cases, supporting our initial
choice of the plane of charge.

In conclusion, we establish the framework to extract
the full tensorial dielectric interface profiles from MD
data. The perpendicular profiles ε−1

⊥ (z) exhibit rich
structure and distinct differences between hydrophobic
and hydrophilic surfaces. In the context of coarse-grained
PB modeling, experimental capacitance data are well re-
produced. The dielectric dividing surface position is sug-
gested as a straightforward definition of the width of a
Stern layer with ε = 1. Modifications and non-linear
effects are expected at higher salt concentration, which
shall be addressed in the future.
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Supplementary Information

� Fluctuation-Disspation Relation. To estimate the
dielectric function from the fluctuations of the polariza-
tion, we write a statistical mechanics expression for the
ensemble average excess polarization. The total inter-
action energy of a water-filled volume V in absence of
an external electric field is denoted U (X), with X all
relevant coordinates. The energy change ∆U upon ap-
plication of an external electric field F is given by the
coupling of the polarization to the field inside the dielec-
tric,

∆U =

∫

V
ψ (r) ρ (r) dr, (1)

with ψ the excess potential caused by the field, ∇ψ (r) =
−F , and ρ (r) = ε0∇ · E (r) the total charge density.
The field F to which the fluid responds is constant in
space. Therefore, the field F is associated with either E
or D/ε0 depending on the boundary conditions. After
one partial integration, the excess energy is given by

∆U = −
∫

V
∇ψ (r) · ε0E (r) dr = −

∫

V
F ·m (r) dr,

(2)
where we used that ε0E (r) = −m (r) in absence of free
charges. Defining the total polarization by

M =

∫

V
m (r) dr, (3)

the excess polarization density upon application of the
external field is given by [1, 2]

∆m = ⟨m⟩F − ⟨m⟩0

=

∫
(m− ⟨m⟩0) exp [−β (U −M · F )]dX∫

exp [−β (U −M · F )]dX
,

(4)

where ⟨. . . ⟩F and ⟨. . . ⟩0 denote ensemble averages with
and without applied electric field, respectively. For
molecules without atomic polarizability, the phase space
integration in Eq. 4 involves the positions and orien-
tations of the permanent multipole moments, dX =∏

i dridΩi, with i the molecular index. For small field
F , Eq. 4 can be linearized to yield

∆m ≈
∫
(m− ⟨m⟩0) (1 + βM · F ) exp [−βU ]dX∫

exp [−βU ]dX
, (5)

or, using the short notation for the ensemble average,

∆m (r) ≈ β [⟨m (r)M⟩0 − ⟨m (r)⟩0⟨M⟩0] · F . (6)

Eq. 6 gives all nine components of the excess polarization
separately.
� Calculation of the Parallel Displacement Field.
Gauss’s integral equation for the displacement field reads

∮

∂V
D (r) · n̂ (r) dr =

∫

V
P0 (r) dr, (7)

2

2

x

z

Dx = ε0ED  (z)

Figure S1: Schematic picture of the Gauss volume used for
the integration of Eq. 7. On the left-hand side, the volume
has been chosen such that water molecules are not split across
the boundary, whereas on the right-hand side the water box
is cut perpendicular to the x-axis.
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Figure S2: The dielectric response calculated from the polar-
ization m∥ (z) using Eq. 10 (solid lines), and from an explicit
evaluation of the multipole moments up to the octupole term
using Eq. 4 in the main text (dashed lines). The response is
calculated using the fluctuation equation (Eq. 8 in the main
text). The left panel corresponds to the hydrophilic surface
and the right panel to the hydrophobic surface.

which holds for any volume V. To calculate the dis-
placement field in x-direction we cut the simulation box
perpendicular to the x-axis. Because we cut some wa-
ter molecules, we create a non-zero monopole density on
both sides of the cut. Now we perform the integration
of Eq. 7 over a volume as depicted in Fig. S1, where
the water molecules have been cut on one side, but not
on the other. On the left-hand side of this volume, the
displacement field is still D∥ (z) because of translational
invariance, whereas at the position of the cut it has been
changed by the creation of the monopole density. Inte-
grating Eq. 7 gives

[
Dx

∥ (z)−D∥ (z)
]
S =

∫

V
P0 (z) dr, (8)

with Dx
∥ (z) the displacement field at the position of the

cut and S the surface area of the cut. Taking the diver-
gence of Eq. 8 shows that Dx

∥ is independent of z, be-

cause ∇zD∥ (z) = P0 (z) and ∇z

∫
V P0 (z) dr = P0 (z)S.

In vacuum, P0 (z) vanishes and D∥ (z) = ε0E∥. There-
fore,

D∥ (z) = ε0E∥ −
1

S

∫

V
P0 (z) dr, (9)

and thus

m∥ (z) = − 1

S

∫

V
P0 (z) dr. (10)
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Eq. 10 can be verified using an alternative reasoning.
The polarization m (r) can be written as

m (r) = − 1

4π

∫
m (r′) · ∇′ r − r′

|r − r′|3 dr′

= − 1

4π
∇

∫
m (r′) · ∇′ 1

|r − r′| dr
′.

(11)

Partial integration gives

m (r) = − 1

4π
∇

[∫
∇′ · m (r′)

|r − r′|dr
′

−
∫ ∇′ ·m (r′)

|r − r′| dr′
]
.

(12)

Transforming the first integral of Eq. 12 leads to

m (r) = − 1

4π
∇

[∮
m (r′) · n̂
|r − r′| dr′

−
∫ ∇′ ·m (r′)

|r − r′| dr′
]
,

(13)

which has two parts: the first scales like the field from
a surface charge density σ (r) = −m (r) · n̂, and the
second like the field from a volume charge density ρ (r) =
∇ · m (r). When cutting the volume (for example in
the way indicated in Fig. S1, but it can be cut in any
way), the only charge density scaling like a surface charge
density is the charge density created by cutting the water
molecules. Therefore, the surface charge density σ (r)
must be equal to

σ (r) =
1

S

∫

V
P0 (r) dr, (14)

confirming Eqs. 9 and 10.

As evidence of the equivalence of the polarization as
calculated from Eq. 10, and the polarization calculated
from summing all multipole fields explicitly (Eq. 4 in the
main text), we show the dielectric response calculated
with both methods in Fig. S2. The dielectric response
is calculated using the fluctuation equation (Eq. 8 in
the main text). The curves coincide, thus confirming the
validity of our method.

� On the Molecular Origin of the Structure of the
Perpendicular Response. Clearly, the structure of the
perpendicular dielectric response function ε−1

⊥ (z) is re-
lated to the collective ordering and orientation of the po-
lar molecules at the interface. To see whether there may
be a simple relation between the perpendicular response
ε−1
⊥ (z) and the electric field caused by the ordering and
orientation of the water molecules in absence of an exter-
nal field E⊥, we plot both functions in Fig. S3. There is
no direct correlation between the two quantities, showing
that the shape of the response function is non-trivial and
not related to the equilibrium polarization of interfacial
water in any simple or obvious way.
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Figure S3: The perpendicular dielectric response ε−1
⊥ (z) as

a function of z (solid lines) at a hydrophilic (left) and a hy-
drophobic surface (right). Also shown is the electric field
E⊥ (z) caused by the oriented water molecules at the inter-
face in absence of an external field (dashed lines), showing no
direct correlation with the dielectric response.

� Pressure Between Parallel Plates. The electro-
static potential ψ (z) between two plates is calculated
from the modified Poisson-Boltzmann equation,

ε0∇2
zψ = 2ec0 sinh [βeψ] exp [−µ]ε−1

⊥ −D⊥∇zε
−1
⊥ , (15)

with c0 the bulk salt concentration, µ (z) a non-
electrostatic ion-wall potential, β the inverse ther-
mal energy and e the absolute charge of an elec-
tron. The displacement field is calculated as
the integral over the monopole density P0 (z) =
−2ec0 sinh [βeψ (z)] exp [−µ (z)],

D⊥ (z) =

∫ z

0

P0 (z
′) dz′. (16)

For the dielectric profile between the two plates we join
the ε−1

⊥ (z) profiles from both surfaces piecewise. We
calculate the disjoining pressure between two plates from
the free energy [3, 4, 5, 6],

βF =

∫
βψ

2
P0 +

∑

±
c±

[
µ+ log

c±
c0

− 1

]
dz + βσ0ψ0,

(17)
with σ0 the surface charge density, ψ0 the potential at
the wall and c± = c0 exp [∓βeψ − µ] the ionic density.
The pressure between two plates at separation d is given
by

βp (d) = −dβF
dd

− 2c0. (18)

� Experimental Values of the Double Layer Capaci-
tance. This section contains an overview of published
experimental values of the double layer capacitance on
various carbon-based surfaces in aqueous electrolytes.
The capacitance of the electrical double layer is mea-
sured using cyclic voltammetry or AC impedance spec-
troscopy. The accessible surface area is determined using
N2 adsorption.

In the tables below, we grouped the different mea-
surements based on the contact angle in aqueous solu-
tion. When below 90◦, the substrate is classified as hy-
drophilic (listed in Tab. S1), otherwise as hydrophobic
(listed in Tab. S2). Materials of which the contact angle
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Figure S4: Double layer capacitance as a function of bulk
concentration, showing all data points from Tabs. S2, S1, S3
and S4, as well as the bulk value of the capacitance, calculated
using εbulk = 71 and µ (z) = 0.

is unknown or unclear are displayed in Tab. S3. All data
are plotted as a function of electrolyte concentration in
Fig. S4. The scattering in the data between substrates
and electrolytes is larger than the structural difference
between hydrophilic and hydrophobic substrates. Never-
theless, when a specific substrate is modified to become
more hydrophilic, for example using functional groups
or doping, the double layer capacitance increases [7, 8].
In addition, we show the limiting “bulk” value of the
differential double layer capacitance C = dσ0/dψ0, cal-
culated from Eq. 15 using the bulk dielectric constant
ε−1
⊥ (z) = ε−1

bulk with εbulk = 71 for the entire fluid and
µ (z) = 0. For all substrates, the capacitance is much
lower than the bulk value.

Many of the materials used for double layer capacitors
belong to the class of so-called activated carbons, which
are treated with a gas plasma or a strong acid or base
solution to make the surface more porous. While increas-
ing the total capacitance of the sample, activation of a
carbon surface often decreases the capacitance per unit
surface area dramatically [9, 10]. Although the mecha-
nism leading to this decrease is unclear, we can safely
assume that a part of the additional surface area created
by the activation process is inaccessible to the electrolyte,
and therefore does not contribute to the double layer ca-
pacitance. Because of these poorly defined surface char-
acteristics, we do not include the activated carbons in
Fig. 3 (a) of the main paper. Therefore, Fig. 3 (a) only
contains the data from Tabs. S2, S1 and S3.

� On the Plane of Charge. The exact location of the
surface charge density on the substrate has an influence
on the total measured capacitance. For Fig. 3 of the
main paper, the charge density is placed at the position
of the outermost heavy solid atom, which is the oxygen
in case of the hydrophilic surface and the outermost car-
bon atom in case of the hydrophobic surface. Provided
that charges inside the solid are mobile, these positions
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Figure S5: Total capacitance of the double layer for different
positions a of the charge inside the substrate as a function of
the bulk salt concentration c0. Top: the dielectric function
is equal to the bulk value everywhere, ε−1

⊥ (z) = ε−1
bulk with

εbulk = 71 everywhere in the fluid and 1 inside the substrate.
Bottom: the dielectric function is ε−1

⊥ (z) = ε−1
bulk for z >

zDDS
⊥ = 0.1 nm and 1 elsewhere. In the insets, we show a
schematic image of the substrate with the plane of charge
located at a distance a from the aqueous interface.

make most sense chemically. In addition, this is the po-
sition where the charge density would be placed in an
atomistic simulation. Fig. S5 shows the dependence of
the capacitance on the distance a between the plane of
charge and the position of the outermost solid atom. No
additional repulsive potential is used and the dielectric
constant of the substrate is set equal to 1. Obviously,
changing a and the dielectric constant of the substrate
simultaneously would lead to similar results. In the top
panel, the dielectric constant is kept equal to the bulk
value everywhere, ε−1

⊥ (z) = ε−1
bulk with εbulk = 71. When

the charge is moved further inside the substrate (increas-
ing a), the capacitance goes down, but at the same time,
the dependence of the capacitance on the salt concen-
tration changes dramatically. Clearly, the concentration
dependence of the experimental data (black circles) can
not be reproduced by only assuming a finite displacement
of the charge inside the substrate. In the bottom panel,
we show the same curves, now using the sharp-kink ap-
proximation of the dielectric profile: ε−1

⊥ (z) = ε−1
bulk for

z > zDDS
⊥ = 0.1 nm and ε−1

⊥ = 1 otherwise. The curve for
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a = 0 is already shown in Fig. 3 (a) of the main paper.
Although the capacitance for small a still reproduces the
experimental data, the concentration dependence of the
curves deviates from the experimental trend.
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Figure S6: The inverse capacitance C−1, calculated from
Eq. 15, of a system with ε−1

⊥ (z) = 1 until z = zDDS
⊥ and

ε−1
⊥ (z) = ε−1

bulk with εbulk = 71 afterwards for hydrophilic
(zDDS

⊥ = 0.1 nm) and hydrophobic (zDDS
⊥ = 0.12 nm) sur-

faces, plotted as a function of the inverse diffuse layer capaci-
tance from Eq. 19. We used µ (z) = 0 (solid lines), as well as
a mild repulsive potential µ (z) = α exp [1− z/λ] with α = 1
and λ = 0.15 nm (dotted lines).

� Parsons-Zobel Plot. The capacitance according to
the Gouy-Chapman model of a solid-electrolyte inter-
face at low surface potential is easily calculated from the
Debye-Hückel equation as

Cdiffuse = ε0εbulk κ, (19)

with the inverse Debye screening length given by

κ =

√
2 e2c0

ε0εbulk kBT
. (20)

Plotting the measured inverse capacitance as a function
of the inverse of the expression in Eq. 19 gives a clear
visualization of the deviation of the Gouy-Chapman the-
ory from experimental data [11, 12]. Experimentally, the
curve is found to be linear, with slope 1, for high values
of C−1

diffuse (low salt concentration c0), dropping towards
zero for higher salt concentrations [13]. The intercep-
tion point of the linear extrapolation of the curve at low
salt concentration with the line C−1

diffuse = 0 can be in-
terpreted as the inverse of the Stern layer capacitance
which is placed in series with the diffuse layer capaci-
tance. In Fig. S6, we present a Parsons-Zobel plot of our
theoretical curves of the capacitance for the Stern layer
model: ε−1

⊥ (z) = 1 until z = zDDS
⊥ and ε−1

⊥ (z) = ε−1
bulk

afterwards. Qualitatively, the curves agree with the ex-
perimental results.
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Table S1: Double layer capacitance of hydrophilic carbon-based materials.

Surface material Contact angle Electrolyte Concentration Capacitance Ref.

(◦) (M) (µF/cm2)

Carbon fibers 24 - 37 [14] H2SO4 0.5 6.0 [15]a

7.5

9.2

12.9

Carbon-coated Al2O3 57 H2SO4 1 7.0 [8]

Nitrogen-doped 41 11.4

Boron-doped 60 12.9

Oxidated polyvinylpyridine 45 - 67 H2SO4 1 13.2 [16]

Blend with coal tar pitch [17, 18] 14.3

aDifferent values correspond to different commercial samples (untreated).

Table S2: Double layer capacitance of hydrophobic carbon-based materials.

Surface material Contact angle Electrolyte Concentration Capacitance Ref.

(◦) (M) (µF/cm2)

Boron-doped diamond > 90 [19] H2SO4 0.1 3.7 [20]a

7.1

KCl 0.1 3.4

4.5

NaNO3 0.1 3.8

6.3

NaOH 0.1 3.9

4.8

Carbide-derived carbon > 90 [21] H2SO4 2 11.4 [22]

TiC, TiC & SiC/TiC 13.8

11.8

Graphite 98 [23] KOH 6 17.5 [24]b

16.7

19.2

25.9

33.9

41.6

51.4

64.0

Graphene nanosheets 127 [23] KOH 7.6 29 [25]

26

52

Carbon black H2SO4 1 8 [26]

Graphite powder NaCl 5.6 35

aThe different values correspond to AC impedance and cyclic voltametry measurements, respec-
tively.

bThe surface area of natural graphite was increased using ball-milling; different values correspond
to different milling times.
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Table S3: Double layer capacitance of materials with unknown contact angle.

Surface material Electrolyte Concentration Capacitance Ref.

(M) (µF/cm2)

Porous carbon H2SO4 1 5.3 [27]

Porous carbon with polyaniline 9.0

Silica-templated mesoporous carbon H2SO4 1 12.8 [16]

10.1

7.4

9.3

11.4

9.4

Silica-templated mesoporous carbon H2SO4 1 7.3 [28]

2 14 [29]

2 13 [30]

Silica-templated mesoporous carbon H2SO4 1 10.2 [31]

10.6

10.7

10.9

KOH 6 9.8

10.9

8.9

10.6

Mesoporous carbon with NiO KOH 2 18.2 [32]

Carbon aerogel KOH 4 23 [26]

KOH 6 28.5 [33]

Porous carbon KOH 6 33 [10]

Self-ordered mesoporous carbon LiPF6 1 10 [34]

Nitrogen-containing mesoporous carbon KOH 6 39.2 [9]

Ordered mesoporous carbon 10.0

Porous carbon from cabonization KOH 6 20.8 [35]

of poly(vinylidene chloride) 22.0

20.8

18.2

15.2

12.9

Diamond film NaCl 0.5 3.7 [36]a

Polyacrylonitrile H2SO4 1 24.9 [16]

Blend with coal tar pitch 20.3

17.5

TiC/TiO2 H2SO4 2 14.8 [22]

Carbon composite from waste paper KOH 6 43.2 [33]

aAfter equilibration in electrolyte, assuming complete wetting at the maximum of the capacitance.
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Table S4: Double layer capacitance of different kinds of activated carbons.

Surface material Electrolyte Concentration Capacitance Ref.

(M) (µF/cm2)

CO2 activated porous carbon KOH 6 13 [10]

9.6

KOH activated porous carbon 10

8.8

Nitrogen-containing mesoporous KOH 6 26.2 [9]

carbon, activated with KOH 13.7

11.3

Ordered mesoporous carbon, KOH 6 11.2 [9]

activated with KOH 12.7

12.4

KOH-activated carbon H2SO4 1 20.4 [37]

25.1

26.9

NaOH-activated carbon 24.7

25.0

28.9

Wood origin HNO3-activated carbon H2SO4 1 11.6 [38]

10.3

19.1

25.5

23.0

32.6

Activated carbon NaCl 5.6 19 [26]

O2-activated carbon fibers 6.6 [15]

7.0

9.1

13.2


