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� Abstract. We derive the theoretical framework to calculate the dielectric response tensor and determine its
components for water adjacent to hydrophilic and hydrophobic surfaces using molecular dynamics simulations.
For the nonpolarizable water model used, linear response theory is found to be applicable up to an external
perpendicular field strength of ∼ 2 V/nm, well beyond the experimental dielectric breakdown threshold. The dipole
contribution dominates the dielectric response parallel to the interface, whereas for the perpendicular component
it is essential to keep the quadrupole and octupole terms. Including the space-dependent dielectric function in a
mean-field description of the ion distribution at a single charged interface, we reproduce experimental values of the
interfacial capacitance. At the same time, the dielectric function decreases the electrostatic part of the disjoining
pressure between two charged surfaces, unlike previously thought. The difference in interfacial polarizability between
hydrophilic and hydrophobic surfaces can be quantized in terms of the dielectric dividing surface. Using the dielectric
dividing surface and the Gibbs dividing surface positions to estimate the free energy of a single ion close to an
interface, ion specific adsorption effects are found to be more pronounced at hydrophobic surfaces compared to
hydrophilic ones, in agreement with experimental trends.

1 Introduction

Electrostatic interactions between charged objects in
aqueous solution, such as lipid membranes, proteins and
ions, are profoundly influenced by the surrounding water
[1]. Each charge embedded in the dielectric environment
of the water couples to the local electric field, which com-
prises both the displacement field emanating from the
charged objects and the polarization field stemming from
the dielectric medium. In a macroscopic approach, the
effect of the water on electrostatic interactions is quan-
tified by means of the static dielectric tensor ε, which
is spatially constant and diagonal in bulk. Close to an
interface, however, the effect of the water is more in-
tricate. The water density near an interface strongly
deviates from its bulk value and the proximity of a sur-
face restricts the molecular dynamics [2]. Short-ranged
interactions between macroscopic objects in water that
go beyond homogeneous continuum electrostatics, such
as hydration forces and hydrophobic effects, are often
attributed to this local variation of the solvent struc-
ture [3, 4]. Because of the extremely polar nature of
water molecules, the water structure directly affects the
electrostatic environment, making the dielectric tensor
inherently space-dependent. The effect of the solvent
structure strongly depends on the nature of the inter-
face: hydrophobic and hydrophilic surfaces have a vastly
different influence on the adjacent water [5, 6].

Within the framework of linear response theory, the

space-dependent dielectric response function can be ex-
pressed as a nonlocal tensor, depending on the positions
of the source and the response [7, 8, 9]. In Fourier space,
the nonlocal dielectric tensor of bulk water exhibits two
singularities for wave vectors at molecular length scales
[10]. Whether similar anomalies appear in the space-
dependent static dielectric function of interfacial water
has long remained unclear.

The capacitance formed by a charged interface and
its counterions serves as a sensitive probe for measuring
dielectric interface effects. It has been known for almost
a century that the Gouy-Chapman model overestimates
experimental data of the interfacial capacitance, which
has been ascribed to variation of the dielectric constant
at the interface [11, 12]. In the Stern model of the electric
double layer, the variation of the dielectric tensor is ac-
counted for by the combination of a length scale and an
effective interfacial dielectric constant, reproducing the
experimental capacitance [13]. In the limit of low salt
concentration, it has been shown how the Stern layer
contribution to the capacitance emerges from the intro-
duction of a nonlocal dielectric function, independent of
the exact form of the dielectric profile [7]. The relation
between the dielectric profile and the length scale ap-
pearing in the Stern model has been established as well
[8]. Only recently however, have we explicitly calculated
the interfacial dielectric profile of pure water [14].

The question of whether the decrease of the dielectric
profile reflects ionic or rather intrinsic water properties is
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still subject to debate. The decrease of the dielectric con-
stant has been attributed to the high ionic concentration
close to charged interfaces [15] or to dielectric saturation
due to the corresponding high electric field strength [16].
However, recent terahertz spectroscopy experiments on
carbohydrates [17] and lipid membranes [18] have shown
that the dielectric response of water itself is modified
within an interfacial layer of molecular size. Theoretical
attempts to relate the dielectric response to molecular
dynamics have been based on analytic as well as simu-
lation studies. Analytic approaches include approximate
statistical mechanical methods, which have been used to
show that the reduced dielectric constant at the inter-
face is associated with molecular ordering and orienta-
tion [19]. In another analytic approach, water polariza-
tion has been included explicitly in a mean-field descrip-
tion [20, 21], where molecular effects such as the above-
mentioned singularities are not accounted for. Simu-
lations with explicit water and ions did not allow for
straightforward interpretation previously, partly because
of the appearance of higher-order multipole moments. In
fact, the preferred orientation of water molecules near an
interface is set by the fundamental asymmetry stemming
from the quadrupole and higher-order even multipole
moments [22, 23, 24]. This asymmetrical water structure
plays a decisive role in the dielectric response of water at
an interface, which is ignored in many studies [25]. Re-
cently, we have shown that the electric quadrupole and
octupole moments are essential components of the inter-
facial dielectric function [14].

The dielectric function in thin interfacial layers
strongly affects the forces between macromolecules and
surfaces as a result of the long range of the electrostatic
force. Furthermore, a knowledge of the space-dependent
dielectric tensor is indispensable for the interpretation of
the ionic surface propensity [26] and solvation free en-
ergy [27, 28, 29], as well as the electrophoretic mobil-
ity of solutes and the double-layer capacitance [11, 12].
In addition, the dielectric tensor is a vital ingredient for
coarse-grained calculations, where the water is taken into
account implicitly. Finally, the electrostatics close to a
solid interface are crucial from a technological point of
view, in particular for the design of novel energy storage
media based on the double-layer capacitance.

In this paper, we thoroughly investigate the conse-
quences of the interfacial dielectric profile for the in-
terfacial capacitance, the hydration interaction between
charged plates in water, and the ion adsorption energy at
hydrophilic and hydrophobic surfaces. First, we present
a complete derivation of the expressions to calculate the
components of the dielectric response tensor at planar
interfaces from molecular dynamics simulations. Sec-
ond, we calculate the dielectric tensor of pure water adja-
cent to both hydrophilic (hydroxyl-terminated) and hy-
drophobic (hydrogen-terminated) diamond surfaces. We
show that the salient differences between the two sur-

face types can be quantified in terms of a single length
scale, set by the position of the dielectric dividing surface.
Third, we investigate the effect of the higher-order elec-
tric moments on the electric potential profile across the
interface. Fourth, we incorporate the space dependence
of the dielectric tensor in a Poisson-Boltzmann descrip-
tion of a salt solution at a charged interface. Comparing
with experimental values, we show that including the
dielectric response of pure water suffices to capture the
dependence of the double-layer capacitance on the salt
concentration. Fifth, we calculate the disjoining pressure
between two charged surfaces using the same Poisson-
Boltzmann description. On the Poisson-Boltzmann level,
the dielectric profile appears to be insufficient to describe
the strong short-ranged repulsive forces commonly mea-
sured between both charged and uncharged surfaces in
water [30]. Finally, we estimate the free energy of a single
ion near a dielectric boundary and show that the different
dielectric characteristics of hydrophilic and hydrophobic
surfaces have a pronounced effect on ion adsorption. A
partial account of the work described in this paper has
been published in Ref. [14]. All equations are given in si
units.

2 Theoretical Framework

� Linear response. In the most general sense, the
dielectric response function depends on the position r of
the displacement field D (r), the position r′ of the local
electric field E (r′) and on the magnitude of the field. In
the linear response regime, a change in the displacement
field is linearly related to a change in the electric field,

∆D (r) = ε0

∫

εnl (r, r
′) ·∆E (r′) dr′, (1)

with ε0 being the permittivity of vacuum and εnl (r, r
′)

being the nonlocal dielectric tensor. If the electric field is
constant in space, ∆E (r) = ∆E, the response function
is automatically local,

∆D (r) = ε0ε (r) ·∆E with ε (r) =

∫

εnl (r, r
′) dr′,

(2)
making the usual locality assumption εnl (r, r

′) =
ε (r) δ (r − r′) superfluous. Alternatively, the inverse di-
electric response function is defined by [7]

∆E (r) = ε−1
0

∫

ε−1
nl (r, r′) ·∆D (r′) dr′, (3)

with ε−1
nl (r, r′) being the functional inverse of εnl (r, r

′),
defined by

∫

εnl (r, r
′) ε−1

nl (r′, r′′) dr′ = δ (r − r′′). The
inverse dielectric response function is automatically local
when the displacement field is constant in space, yielding

∆E (r) = ε−1
0 ε−1 (r) ·∆D, (4)
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with ε−1 (r) being the inverse dielectric function. Note
that the relation ε (r) ε−1 (r) = 1 does not hold without
additional assumptions.
� Multipole expansion. In a classical approximation,
the polar molecules are regarded as being composed of
atoms, located at positions rij , carrying point charges qij .
The total charge density ρ (r) is given by averaging over
the partial charges qij of all atoms j (i) and all molecules
i,

ρ (r) =
∑

i

∑

j(i)

qij δ
(

r − rij
)

. (5)

We will now expand the electric field in terms of molecu-
lar multipole moments, starting from the integral equa-
tion for the electric field [31],

ε0E (r) =
1

4π

∫

ρ (r′)
r − r′

|r − r′|3
dr′. (6)

After inserting Eq. 5, the integration variable is shifted
from r′ to r′ + rij − ri, leading to

ε0E (r) =
1

4π

∫

∑

i

∑

j(i)

qijδ (r
′ − ri)×

(r − r′)−
(

rij − ri
)

| (r − r′)−
(

rij − ri
)

|3
dr′,

(7)

where ri is some arbitrary reference position in the
molecule. The fraction in Eq. 7 is then expanded for the
case where the intramolecular distance rij − ri is much
smaller than the distance between charge and field points
r − r′,

ε0E (r) =
1

4π

∫

∑

i

∑

j(i)

qijδ (r
′ − ri)×

[

r − r′

|r − r′|3
+
(

rij − ri
)

· ∇′ r − r′

|r − r′|3
+

1

2

(

rij − ri
) (

rij − ri
)

: ∇′∇′ r − r′

|r − r′|3
+ . . .

]

dr′,

(8)

where the minus sign of −
(

rij − ri
)

cancels the minus
sign of ∇′ (r − r′) = −∇ (r − r′). Next, all gradient
terms are integrated by parts,

ε0E (r) =
1

4π

∫

r − r′

|r − r′|3

[

∑

i

∑

j(i)

qijδ (r
′ − ri)−

∇′ ·
∑

i

∑

j(i)

qijδ (r
′ − ri)

(

rij − ri
)

+

1

2
∇′∇′ :

∑

i

∑

j(i)

qijδ (r
′ − ri)

(

rij − ri
) (

rij − ri
)

−

. . .

]

dr′.

(9)

The separate components appearing in Eq. 9 can be
expressed in terms of the molecular multipole moments

of order l ∈ {0, 1, 2, . . . }, which are defined as

pli =
1

l!

∑

j(i)

qij
(

rij − ri
)l
, (10)

with j running over all partial charges qij of molecule i.
The power inside the summation is understood as a serial
direct vector multiplication, making pli a tensor of rank
l. The density of each multipole moment is defined as

Pl (r) =
∑

i

pli δ (r − ri) , (11)

where the summation is carried out over all molecules
[32]. Using Eqs. 10 and 11, Eq. 9 becomes

ε0E (r) =
1

4π

∫

r − r′

|r − r′|3
×

[

P0 (r
′)−∇′ · P1 (r

′) +∇′∇′ : P2 (r
′)− . . .

]

dr′.

(12)

We use the identity

∇ ·
r − r′

|r − r′|3
= 4πδ (r − r′) (13)

to perform the integrals in Eq. 12, except for the P0

term, to which we will come back later. The divergence
of Eq. 12 equals

∇ · ε0E (r) = ∇ ·
1

4π

∫

P0 (r
′)

r − r′

|r − r′|3
dr′+

[

−∇ · P1 (r) +∇∇ : P2 (r)− . . .

]

,

(14)

from which the electric field E (r) follows as

ε0E (r) = D (r)−m (r) . (15)

The first term in the expansion on the right-hand side of
Eq. 15 is the monopole term,

D (r) =
1

4π

∫

P0 (r
′)

r − r′

|r − r′|3
dr′, (16)

corresponding to the field from the free charges. The
second term is the total polarization density m (r),

m (r) = P1 (r)−∇ · P2 (r) +∇∇ : P3 (r)− . . . , (17)

which comprises contributions from the dipole moment
per unit volume P1, quadrupole moment P2, octupole
moment P3 and all higher-order moments. When the
polarization is calculated in basic electrostatics, all mul-
tipole terms of order higher than the dipole are often
neglected [31], which is exact for a Stockmayer fluid, for
example, where each molecule carries an ideal dipole.
For water however, the higher-order terms are of major
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importance. Note that we could also calculate the multi-
pole moments from all individual atoms instead of aver-
aging an expansion in molecular multipole moments. Al-
though both descriptions of the electrostatics are equiv-
alent, clustering the atoms first to calculate molecular
multipole moments has the advantage of a vanishing
monopole moment in the case of neutral molecules.
� Fluctuation-dissipation theorem. To estimate the
dielectric function from the polarization fluctuations, we
write a statistical mechanical expression for the ensem-
ble average excess polarization. The total interaction
energy of a water-filled volume V in absence of an exter-
nal electric field is denoted U (X), with X all relevant
coordinates. The energy change ∆U upon application of
an external electric field is given by the coupling of the
polarization to the field F inside the dielectric,

∆U =

∫

V

ψ (r) ρ (r) dr, (18)

with ψ being the excess potential caused by the field,
∇ψ (r) = −F , and ρ (r) = ε0∇ · E (r) being the total
charge density. The field F to which the fluid responds is
constant in space. Therefore, F is associated with either
E or D/ε0 depending on the boundary conditions. After
one partial integration, the excess energy is given by

∆U = −

∫

V

∇ψ (r) · ε0E (r) dr = −

∫

V

F ·m (r) dr,

(19)
where we used that ε0E (r) = −m (r) in the absence of
free charges. Defining the total polarization by

M =

∫

V

m (r) dr, (20)

the excess polarization density upon application of the
external field F is given by [33, 34, 35]

∆m = 〈m〉F − 〈m〉0

=

∫

(m− 〈m〉0) exp [−β (U −M · F )]dX
∫

exp [−β (U −M · F )]dX
,

(21)

where 〈. . . 〉F and 〈. . . 〉0 denote the ensemble average
with and without applied electric field, respectively. For
molecules without atomic polarizability, the phase space
over which the integration in Eq. 21 is performed consists
of the positions ri and orientations Ωi of the permanent
multipole moments, dX =

∏

i dridΩi, with i being the
molecular index. For a small field F , Eq. 21 can be
linearized to yield

∆m ≈

∫

(m− 〈m〉0) (1 + βM · F ) exp [−βU ]dX
∫

exp [−βU ]dX
.

(22)
Using short-hand notation for the ensemble averages, we
obtain the excess polarization vector as

∆m (r) ≈ β [〈m (r)M〉0 − 〈m (r)〉0〈M〉0] · F . (23)

The term in brackets in Eq. 23 includes all nine compo-
nents of the fluctuation tensor.
� Boundary conditions. In a planar system with
translational invariance in the x and y directions and a
dielectric discontinuity in z direction, the dielectric ten-
sor is diagonal with only two unique components: one
parallel and one perpendicular to the surface. Addition-
ally, the electric field and the polarization density depend
only on the z direction. Maxwell’s equation∇×E (z) = 0
implies

∇zEx (z) = ∇zEy (z) = 0, (24)

so that E‖, corresponding to Ex or Ey, is independent
of z everywhere. Using Eq. 2, Eq. 15 and the symmetry
condition ∆E‖ = E‖ gives

ε‖ (z) = 1 +
∆m‖ (z)

ε0E‖
. (25)

The constant field F‖ in Eq. 23 must correspond to the
constant field E‖. Therefore, combining Eqs. 23 and 25
leads to

ε‖ (z) ≈ 1 + ε−1
0 β

[

〈m‖ (z)M‖〉0 − 〈m‖ (z)〉0〈M‖〉0
]

.
(26)

Now we turn to the perpendicular component ε⊥ (z).
Maxwell’s equation for the displacement field, ∇·D (z) =
P0 (z), shows that the displacement field is constant in
space when P0 (z) = 0. Using the boundary condition
∆D⊥ (z) = D⊥, the inverse dielectric function given in
Eq. 4 becomes

ε−1
⊥ (z) = 1−

∆m⊥ (z)

D⊥
. (27)

In the perpendicular case, the spatially constant field
F⊥ must be associated with the constant displacement
field D⊥/ε0. Consequently, by combining Eqs. 15, 23 &
27 we arrive at the fluctuation equation for the inverse
perpendicular permittivity,

ε−1
⊥ (z) ≈ 1− ε−1

0 β [〈m⊥ (z)M⊥〉0 − 〈m⊥ (z)〉0〈M⊥〉0] .
(28)

When we apply an external electric field, the dielectric
tensor can be determined directly using Eqs. 25 & 27.
Eqs. 26 & 28 can be used when considering the fluctua-
tions in the absence of an external electric field instead.
� Calculation of the polarization density. The per-
pendicular electric field is calculated from an integral
over all charges,

E⊥ (z) = E⊥ (0) +

∫ z

0

ρ (z′)

ε0
dz′. (29)

In Eq. 29, E⊥ (0) is the external electric field. Using
m (0) = 0 and Eq. 15 with the fact that D⊥ is constant,
we find the equation for the perpendicular polarization
density

m⊥ (z) = −

∫ z

0

ρ (z′) dz′. (30)



Langmuir 28, 7679–7694 (2012) 5

To derive an expression for the parallel polarization, we
virtually cut out a volume from the simulation box. In
the following, we adopt two different, but equivalent
viewpoints. First, we consider all partial charges on the
atoms of each molecule explicitly. By cutting the vol-
ume, some water molecules are split, forming a nonzero
monopole density P0 (r) on either side of the virtual cut.
In the second viewpoint, idealized multipole moments are
located at a single point within each molecule, and the
multipole moments are not affected by cutting.

According to the first viewpoint, the net charge in-
side the volume that has been carved out comprises only
P0 (r), stemming from the water molecules that have
been split by cutting the volume, because the intact wa-
ter molecules carry no net charge. Since the split water
molecules are all located near the surface of the volume,
the integrated charge takes the form of a surface charge,

∫

V

ρ (r) dr =

∮

∂V

σ (r) dr, (31)

with σ (r) being the surface charge density arising from
P0 (r).

Adopting the second viewpoint, the total charge in-
side the volume is calculated from the polarization,

∫

V

ρ (r) dr = −

∫

V

∇ ·m (r) dr, (32)

which can be transformed into a surface integral,
∫

V

ρ (r) dr = −

∮

∂V

m (r) · n̂ dr. (33)

Realizing that Eqs. 31 and 33 hold for any volume V,
we find σ (r) = −m (r) · n̂. To calculate the polarization
in x direction, we introduce a virtual cut perpendicular
to the x axis. We only cut the water molecules at the
position of the virtual cut, closing the volume without
cutting any other molecules. The surface charge density
resulting from the split water molecules equals

σ (z) =

∫

P0 (x, z) dx, (34)

where the x-dependence of P0 (x, z) has the form of a
dirac delta function at the position of the cut. Along the
surface of the cut, m (z) · n̂ = ±m‖ (z), and thus

m‖ (z) = ∓

∫

P0 (x, z) dx, (35)

where the different signs apply to closing the volume and
integrating P0 (x, z) on the different sides of the cut. To
calculate m‖ (z), Eq. 35 is averaged over many different
cut positions along the x axis.

The polarization density components from Eqs. 30
and 35 are used directly to calculate the components of
the dielectric response tensor. Alternatively, the polar-
ization density is estimated from the expansion of Eq. 17,

Figure 1: Topview of the two diamond surfaces: (a)
hydrophilic (hydroxyl-terminated) and (b) hydrophobic
(hydrogen-terminated). The oxygen atoms are shown in red,
the hydrogen in white and the carbon in blue. (c)–(d) Cor-
responding molecular density profiles n (z) of two different
water models: spc/e (blue solid lines) and tip4p/2005 (red
dashed lines), in absence of an external field.

where the multipole densities are calculated explicitly ac-
cording to Eqs. 10 and 11. For this alternative method,
we calculate the contributions up to the octupole term.
Higher-order terms cannot be calculated from the simu-
lations with sufficient accuracy. The molecular multipole
moments of Eq. 10 are calculated with respect to the po-
sition of the oxygen atom.

3 Simulations & Results

� Simulation setup. We perform molecular dynam-
ics simulations of pure spc/e water in contact with
a diamond slab consisting of a double fcc lattice of
carbon atoms using the gromacs molecular dynam-
ics simulation package [36]. The primary cell contains
928 water molecules and we employ periodic boundary
conditions in all directions. The carbon-water inter-
action is determined by the Lennard-Jones parameters
σcw = 0.3367 nm and ǫcw = 0.4247 kJ/mol (gromos
96). We study two surface types: one terminated with
hydroxyl groups, giving a hydrophilic surface, and one
terminated with hydrogen atoms, giving a hydrophobic
surface. On the hydrophilic surface, one in four terminal
atoms of the diamond has a hydroxyl group attached,
corresponding to a surface coverage of xoh = 1/4 in the
notation of Ref. [37]. The hydroxyl groups are free to
rotate. The hydrogen atoms terminating the hydropho-
bic diamond have neither Lennard-Jones coefficients nor
charge. The hydrogen atoms of the hydroxyl-terminated
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Figure 2: The parallel dielectric function ε‖ (z) next to (a)
the hydrophilic and (b) the hydrophobic diamond, calcu-
lated from the total polarization m‖ (z) (Eq. 35) and from
an explicit expansion of the polarization up to the octupole
term (Eq. 17). The response is calculated in two differ-
ent ways: from the excess polarization ∆m‖ (z) resulting
from an applied external electric field in parallel direction of
E‖ = 0.05 V/nm (Eq. 25) and from polarization fluctuations
(Eq. 26).

carbon atoms on the hydrophilic surface carry a par-
tial charge of 0.408 e, the oxygen atoms carry −0.674 e
and the connecting carbon atoms carry 0.266 e. The
Lennard-Jones parameters of the oxide-water interaction
are σow = 0.3017 nm and ǫow = 0.8070 kJ/mol, and
the hydrogen atoms have no Lennard-Jones interaction.
Images of the two surface types are shown in Fig. 1
(a)–(b). For the hydrophilic surface, the position z = 0
is defined as the position of the oxygen atoms of the
hydroxyl groups, whereas for the hydrophobic surfaces
it corresponds to the position of the outermost carbon
atoms. We simulate both surface types at vanishing ex-
ternal electric field for a total time of 80 ns, and at field
strengths of E‖ = 0.05 V/nm in parallel direction and
D⊥/ε0 = 0.5, 1.0, 2.0, 4.0 and 8.0 V/nm in perpen-
dicular direction for a total time of 35 − 60 ns. Sim-
ulations at the hydrophilic interface up to 1.0 V/nm
and at the hydrophobic interface at 0.5 V/nm are run
at constant pressure, using a semi-isotropic Berendsen

Figure 3: The inverse perpendicular dielectric function
ε−1

⊥ (z) next to (a) the hydrophilic and (b) the hydrophobic
diamond, calculated from the total polarization m⊥ (z) (Eq.
30) and from an explicit expansion of the polarization up to
the octupole term (Eq. 17). The response is calculated in two
different ways: from the excess polarization ∆m⊥ (z) result-
ing from an applied external displacement field in perpendicu-
lar direction (Eq. 27) and from polarization fluctuations (Eq.
28). For the curves corresponding to the total polarization,
the applied field is D⊥/ε0 = 0.5 V/nm. The curves corre-
sponding to the explicit expansion (dash-dotted lines) have
been averaged over external field strengths of D⊥/ε0 = 2.0,
4.0 and 8.0 V/nm.

barostat. Simulations at higher field strength are run
at constant volume. The Lennard-Jones interaction is
truncated at 1.0 nm using a shifted cutoff scheme. The
Coulomb force is treated using a real-space cutoff at
1.2 nm and pseudo-two-dimensional particle mesh Ewald
summation for the long-ranged interaction. To extract
the excess fields ∆E (z) and ∆D (z), the correspond-
ing fields at vanishing external field are subtracted. The
spc/e model is a nonpolarizable water model and there-
fore electronic polarization is not explicitly included in
the model. However, electronic polarizability effects on
molecular interactions are implicitly included via the pa-
rameterization of the Lennard-Jones term of the water
model. The number density profiles at the two surface
types are shown as solid lines in Fig. 1 (c)–(d). At the
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Figure 4: (a)–(b) Parallel dielectric response calculated from
the explicit multipole expansion up to the octupole using Eq.
10 with Eqs. 11 & 17. The monopole and dipole (solid lines),
quadrupole (dashed lines) and octupole (dotted lines) contri-
butions are shown separately at (c) the hydrophilic and (d)
the hydrophobic surface. All curves are calculated from the
response to an applied electric field of E‖ = 0.05 V/nm using
Eq. 25.

hydrophilic surface, the water molecules gather very close
to the surface, whereas they form a depleted layer at the
hydrophobic surface, conforming to previous results [37].
Most notably, the first peak of the water density at the
hydrophilic surface is significantly higher than at the hy-
drophobic surface.

To examine the sensitivity of the results with respect
to the water model used, we run two short simulations
(5 ns) of the same surfaces in contact with tip4p/2005
water [38], which has been shown to reproduce the ex-
perimental structure factor of water very well [39]. The
density profiles of tip4p/2005 are shown as dashed lines
in Fig. 1 (c)–(d). Apart from a small discrepancy in
the height of the first peak, the results are very simi-
lar to the results for spc/e water. In particular, the
minima and maxima of the density profiles coincide ex-
actly. Although the quadrupole moment of tip4p/2005
is ∼ 20% larger than that of spc/e (in the isotropic
phase, the xx, yy and zz components of p̄2 equal 1.65
and 1.41× 10−3 enm2 for tip4p/2005 and spc/e, respec-
tively, calculated with respect to the oxygen atom; the
bar denotes averaging over all orientations), the dipole
moments are almost identical (0.048 enm for tip4p/2005
and 0.049 enm for spc/e). Therefore, we expect the
dielectric response of the two water models to be similar.

3.1 Dielectric Response

For the parallel orientation, either Cartesian direction x
or y can be used. In the hydrophobic case, the diamond

Figure 5: (a)–(b) Inverse perpendicular dielectric response
calculated from the explicit multipole expansion up to the
octupole using Eq. 10 with Eqs. 11 & 17. The monopole and
dipole (solid lines), quadrupole (dashed lines) and octupole
(dotted lines) contributions are shown separately at (c) the
hydrophilic and (d) the hydrophobic surface. All curves are
calculated from the average response to applied electric fields
of D⊥/ε0 = 2.0, 4.0 and 8.0 V/nm using Eq. 27.

is perfectly isotropic, and the simulations give identical
results in the x and y directions. In the hydrophilic case,
however, there is a nonzero parallel polarization also in
the absence of an electric field. This kind of ferroelec-
tric behavior is due to the anisotropy of the oh-lattice
on the surface. Since proportionality is assumed only
for the excess quantities ∆E and ∆D, the polarization
at zero external field does not constitute a fundamental
problem when using an applied external field. Never-
theless, problems may arise when using the fluctuation
equation, because the fluctuation tensor may not be di-
agonal. Therefore, we diagonalize the fluctuation ma-
trix, aligning the nonzero polarization at vanishing field
in one direction. The diagonal fluctuation tensor con-
tains the eigenvalues of the fluctuation tensor for each
value of z. The largest eigenvalue corresponds to the di-
rection tangentional to the surface in which 〈M〉0 6= 0,
the second-biggest to the surface tangentional direction
in which 〈M〉0 = 0 and the smallest eigenvalue corre-
sponds to the direction normal to the surface. In our
analysis, we only use the second-largest eigenvalue of the
fluctuation tensor, which to a good approximation is not
affected by the nonzero polarization at vanishing field.

The resulting profiles of the parallel dielectric func-
tion are plotted in Fig. 2 for (a) the hydrophilic sur-
face and (b) the hydrophobic surface, calculated using
four different methods. For the first two methods, the
polarization density m‖ (z) is calculated from Eq. 35.
The dashed lines result from an applied electric field of
E‖ = 0.05 V/nm using Eq. 25 and the solid lines from the
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fluctuations at vanishing electric field using Eq. 26. For
both surface types, the profiles resulting from the fluctua-
tion and applied field equations coincide excellently. For
the second two methods, the polarization is estimated
from the explicit expansion of Eq. 17 using terms up
to the octupole moment. The multipole moments are
calculated from Eqs. 10 & 11, where ri is chosen to be
the position of the oxygen atom. Again, the response is
calculated from both an applied electric field using Eq.
25 (shown as dash-dotted lines) and from the polariza-
tion fluctuations using Eq. 26 (shown as dotted lines).
The curves of the explicit expansion follow the curves of
the full polarization, confirming the equivalence of the
methods for calculating the polarization. The dielectric
profile is roughly proportional to the number density,
as would only be expected for noninteracting dilute po-
lar particles. Surprisingly however, the first peak in the
dielectric function at the hydrophobic surface is higher
than at the hydrophilic surface, in opposite order of the
peak heights of the density profiles in Fig. 1. This dis-
parity indicates that, although there are more polariz-
able molecules available in the first density peak at the
hydrophilic surface, their response to an electric field is
more restricted than at the hydrophobic surface. Qual-
itatively, this result corresponds well to our notion that
water is more strongly bound at hydrophilic surfaces. At
the same time, it clearly shows that the simple picture
of noninteracting dilute polar molecules is not sufficient
to describe the dielectric profile of liquid water.

In Fig. 3, we show the inverse perpendicular dielec-
tric function at (a) the hydrophilic surface and (b) the
hydrophobic surface. Using the polarizationm⊥ (z) from
Eq. 30, the response is calculated for an applied electric
field of D⊥/ε0 = 0.5 V/nm (Eq. 27, dashed lines) and
from the fluctuations (Eq. 28, solid lines). Like for the
parallel response, the curves coincide, confirming our for-
malism and the validity of linear response theory for the
applied field strength. Strikingly, ε−1

⊥ (z) passes through
zero several times, which means that ε⊥ (z) has several
singularities, and that there are spatial regions where
the response is negative. This overscreening behavior is
reminiscent of the nonlocal bulk dielectric function [10],
which evidently dominates the perpendicular response.
The excess electric field reaches zero where ε−1

⊥ (z) = 0
and reverses sign in the regions where ε−1

⊥ (z) < 0, giving
rise to several local minima in the resulting electrostatic
potential, as we will discuss in more detail in subsequent
sections. In bulk, the inverse dielectric response corre-
sponds to a bulk dielectric constant of εbulk = 75, which
is close to the literature value for spc/e water of 71 [40].
Also shown in Fig. 3 are the curves calculated from the
explicit expansion of Eq. 17 up to the octupole moment,
showing a satisfactory agreement with the response of
the full polarization, like in the parallel case.

� Multipole components. As the similarity of the
curves in Figs. 2 and 3 distinctly show, the first three

Figure 6: Polarizability as a function of z calculated from Eq.
36 in (a) parallel direction and (b) perpendicular direction.
Due to the nonpolarizable water model used, the polarizabil-
ity only includes multipole orientational effects. The number
density is plotted in panel (c) for comparison.

terms of the multipole expansion of Eq. 17 suffice to de-
scribe the dielectric tensor. To compare the contributions
of the individual multipole moments, we show the first
three terms separately. First, the sum of the first three
terms of the parallel response is shown in Fig. 4 at (a) the
hydrophilic surface and (b) the hydrophobic surface. Sec-
ond, we show the corresponding components separately
in Fig. 4 (c)–(d). Quadrupole and octupole contribu-
tions show similar profiles at the two surface types, but
clearly, the dipole contribution dominates the parallel re-
sponse. In Fig. 5 (a)–(b), we show the sum of the first
three contributions to the perpendicular response, and
the separate terms in (c)–(d). Contrary to the parallel
case, the higher-order terms are non-negligible. In fact,
the effect of the dipole is largely compensated for by the
higher-order terms at both surface types. This clearly il-
lustrates the importance of the higher-order electric mul-
tipoles for the perpendicular dielectric response.
� Polarizability. For a dilute system of noninteract-
ing particles, the dielectric function can be written as
1+αn (r) /ε0, with n (r) the number density of dielectric
molecules and α a microscopic polarizability attributed
to each individual water molecule [34]. To describe the
dielectric constant in condensed media, corrections to the
polarizability appear, as in the famous Clausius-Mosotti
expression. To quantify the deviation from the predicted
response of a dilute system of noninteracting polar par-
ticles, we calculate the space-dependent polarizability,
defined according to linear theory as

α‖ (z)

ε0
=
ε‖ (z)− 1

n (z)
and

α⊥ (z)

ε0
=

1− ε−1
⊥ (z)

n (z)
. (36)

Clearly, because the dielectric profile is calculated using a
nonpolarizable water model, the polarizability α (r) does
not explicitly include electronic, but only orientational
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Figure 7: The inverse perpendicular dielectric response func-
tion ε−1

⊥ (z) calculated from Eq. 27 at different values of the
external field strength D⊥. The position z = 0 corresponds to
the oxygen layer at the hydrophilic surface and the outermost
carbon layer at the hydrophobic surface.

polarization. The main question is whether the polariz-
ability exhibits any simple relation with the particle den-
sity. Both polarizabilities are plotted in Fig. 6 (a)–(b)
as a function of z, together with the number density (c).
In both the parallel and perpendicular directions and at
both surface types, the polarizability exhibits a dip at the
position of the highest density. Another prominent fea-
ture is that the parallel polarizability at the hydrophobic
surface is always higher than in bulk, whereas the par-
allel polarizability decreases at the hydrophilic surface.
Overall, the curves show that the relation between the
different components of the polarizability and the parti-
cle density is intricate and depends on surface type.

� Beyond linear response. In Fig. 7, the perpen-
dicular component of the inverse dielectric constant (Eq.
27) is plotted as a function of z for different values of
the external electric field strength D⊥/ε0. Apart from
a slight difference between the curves taken at constant
pressure (up to 1 V/nm) and constant volume, the re-
sponse at the hydrophilic interface is largely independent
of the applied field strength. At the hydrophobic inter-
face, however, the dielectric response is clearly nonlinear
at external field strengths of 4.0 V/nm and above, as can
be seen from the different response to the different field
directions. At a positive electric field of 8.0 V/nm, the
overscreening seems to be slightly suppressed, as is com-
monly found in ionic liquids at high electric field strength
[41, 42]. Thus, the linear response regime extends to

Figure 8: The molecular number density n (z) at different
values of the perpendicular external field strength D⊥/ε0.

higher field strengths at the hydrophilic interface. It
should be noted that the curves in Fig. 7 are calcu-
lated using a nonpolarizable water model, and therefore
do not include electronic polarization or ionization ef-
fects. Experimental results indicate that on timescales
of 0.01–10 µs the dielectric breakdown of water occurs at
a field strength of the order of ∼ 0.1 V/nm [43]. That
means that the nonlinear response due to multipole ori-
entational effects shown in Fig. 7 is not expected to play
a role in the nonlinear response of real water. We plot the
corresponding density profiles in Fig. 8. Similar to the
dielectric profile, the density profile at the hydrophilic
interface is independent of the external field strength,
whereas the density at the hydrophobic interface gradu-
ally changes with increasing electric field strength. The
nonlinear response at high electric field strength has a
minor, but distinct influence on the effective dielectric
properties of the interface, as we will discuss in the con-
text of the effective dielectric interface position in the
section on coarse-grained modeling approaches.

3.2 Other Effects of the Higher-Order Mul-
tipole Moments on Interfacial Electro-
statics

The strong effect of the higher-order electric multipole
moments on the interfacial water structure manifests it-
self not only in the dielectric response but also in the
electric field in the interfacial region in absence of an
applied external electric field and consequently in the
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Figure 9: The perpendicular components of the terms of the
multipole expansion given in Eqs. 15 and 17, summing the
terms to increasing order. The profiles correspond to the
hydrophobic diamond surface without external displacement
field. The electric field E⊥ (z) is calculated from Eq. 29
and higher-order terms from Eqs. 10 & 11. The molecular
multipole moments are calculated with respect to the oxygen
atom.

potential difference across an aqueous interface. For in-
stance, this surface potential difference is important for
the calculation of single ion solvation free energies.

� The perpendicular displacement field. In the ab-
sence of free charges, the displacement field perpendicu-
lar to the interface is constant in space. When the ex-
pansion of the displacement field is truncated after the
dipole term, however, the resulting sum is certainly not
constant. An illustration is provided in Fig. 9, where
we plot the perpendicular components of the terms of
Eqs. 15 and 17, summing to increasing order for the
case of vanishing displacement field. As can be seen in
Fig. 9 (b), the sum E +P1/ε0 varies appreciably across
the interface, but the variation is largely compensated
for by the quadrupole term −∇ · P2/ε0. The remain-
ing oscillations are again almost fully compensated for
by the octupole term ∇∇ : P3/ε0 shown in Fig. 9 (c).
The oscillations of the hexadecapole term drop below the
noise level, see Fig. 9 (d). Evidently, the higher-order
multipole moments, at least up to the octupole term, are
critical to describing the electrostatics at the interface
properly.

� Surface potential of aqueous interfaces. The
value of the electrostatic potential difference across an
air-water interface has been a source of confusion for
decades, with people not even agreeing on its sign, see

Ref. [44] for a review. Experimental evidence indicates
that the water molecules are preferentially oriented with
the dipole moment pointing roughly along the surface
plane at air-water interfaces [45] and at quarz-water in-
terfaces [46, 47], leaving the question of the sign of the
dipole contribution open. It is well-known however, that
the quadrupole contribution to the interface potential
cannot be ignored [23, 48, 49]. We calculate the inter-
face potential of the water-diamond surface, split into
the dipole and quadrupole contributions. The potential
profile across the interfacial layer is given by

ψ (z)− ψ (zs) = −

∫ z

zs

E⊥ (z′) dz′. (37)

with zs being a reference position in the solid phase. In
the following calculations, we choose ψ (zs) = 0. In case
of a charge-free interface without external electric field,
inserting Eqs. 15 and 17 produces

ψ (z) =

∫ z

zs

P z
1 (z′)

ε0
dz′ −

∫ z

zs

dPzz
2 (z′)

dz′ε0
dz′, (38)

where P z
1 (z) denotes the z component of the dipole

density and Pzz
2 (z) denotes the zz component of the

quadrupole density. Higher-order moments do not con-
tribute, because integrals over the corresponding fields
yield the boundary values of derivatives of the multipole
densities, which vanish because of the constant value of
any multipole density both in the charge-free solid and
in the bulk. When integrated across the entire interfacial
layer, the second term of Eq. 38 yields the negative dif-
ference between the quadrupole density in the bulk liquid
and solid phase,

−

∫ zl

zs

dPzz
2 (z′)

dz′ε0
dz′ =

Pzz
2 (zs)− Pzz

2 (zl)

ε0
= −

P̄zz
2

ε0
,

(39)
with zl being a position in the bulk liquid phase. The bar
denotes the value in the isotropic phase. The quadrupole
moment of a spc/e water molecule in the isotropic
phase is calculated by isotropic angular averaging, giv-
ing p̄2 = 1.41 × 10−3 enm2. To obtain the quadrupole
density P̄2/ε0 in volts, the molecular quadrupole mo-
ment is multiplied by the bulk water number density
nbulk = 33 nm−3 and divided by ε0, yielding

P̄2

ε0
=





0.8428 0 0

0 0.8428 0

0 0 0.8428



 V. (40)

In Fig. 10, the potential profile across the interface, cal-
culated from simulations of the hydrophobic diamond in
water, is plotted as a function of the perpendicular co-
ordinate z. The solid dark-blue line indicates the profile
as calculated from Eq. 37, giving a potential difference
of −0.44 V between bulk liquid and solid. Taking only
the dipole contribution into account yields 0.40 V (red
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Figure 10: The electrostatic potential profile across a charge-
free hydrophobic diamond-water interface calculated from the
electric field (Eq. 37, solid line) and split into the two com-
ponents of Eq. 38: the dipole contribution (dashed line) and
the quadrupole contribution (dash-dotted line). The poten-
tial is calculated with respect to the reference electrostatic
potential in the solid phase.

dashed line in Fig. 10), which has the opposite sign. The
voltage drop is restored to the correct value upon addi-
tion of the quadrupole contribution (dash-dotted light-
blue line), which equals the value calculated from aver-
aging the quadrupole moment of the spc/e water model
over all orientations (Eq. 40). Although the molecular
dipole moment does not depend on the choice of ori-
gin, both the dipole and quadrupole density depend on
the reference point chosen for the expansion. For water
there is no choice of origin for which either one vanishes.
Therefore, both contributions are important for the to-
tal interface potential, but the relative values of the dipo-
lar and quadrupolar contributions vary depending on the
choice of origin.

4 Coarse-Grained Modeling

� Dielectric dividing surface. Instead of the profile of
the inverse dielectric response function begin used, the
dielectric profile at an interface can be modeled by a
sharp discontinuity, but shifted with respect to the Gibbs
dividing surface. The Gibbs dividing surface, which is
the thermodynamically defined interface position, is cal-
culated as usual,

zgds = zs −

∫ zl

zs

n (zl)− n (z)

n (zl)− n (zs)
dz, (41)

with n (z) being the water density and zl and zs being
positions in the bulk liquid and solid phase, respectively.
Equivalent to Eq. 41, we introduce the dielectric dividing

Figure 11: (a) Graphical representation of the construction of
the perpendicular dielectric dividing surface zdds⊥ by extrapo-
lation of the bulk potential profile (Eq. 42, where ∆E⊥ is cal-
culated from Eq. 29 in separate simulations with and without
external displacement field). The curve shown corresponds to
an external displacement field of D⊥/ε0 = 8.0 V/nm. (b) The
corresponding Gibbs dividing surface zgds. (c) Positions of the
perpendicular dielectric dividing surface zdds⊥ and the Gibbs
dividing surface zgds as a function of the applied perpendic-
ular electric field. (d) The perpendicular dielectric interface
shift δ⊥ = zdds⊥ − zgds as a function of the applied perpendic-
ular electric field.

surface,

zdds = zs +

∫ zl

zs

f (zl)− f (z)

f (zl)− f (zs)
dz. (42)

For the parallel dielectric dividing surface we take f (z) =
ε‖ (z), while for the perpendicular dielectric dividing sur-

face we take f (z) = ε−1
⊥ (z). The values of zgds, zdds‖ and

zdds⊥ at vanishing external field are summarized in Tab.
1. The Gibbs dividing surface position clearly shows that
water at the hydrophilic surface moves close to the inter-
face, whereas water retreats from the hydrophobic sur-
face. However, this difference in depletion layer hardly
manifests itself in the position of the dielectric dividing
surface, which is similar for both surface types. To quan-
tify the difference between the two surface types, we look
at the dielectric interface shift δ = zdds−zgds. From Tab.
1 it follows δphob⊥ = −0.10 nm and δphob‖ = −0.14 nm

at the hydrophobic surface and δphil⊥ = 0.03 nm and

δphil‖ = 0.02 nm at the hydrophilic surface. Interest-

ingly, the difference in parallel and perpendicular dielec-
tric interface shift is relatively small, whereas the differ-
ent surface types actually give rise to shifts of opposite
sign. This remarkable difference in the dielectric inter-
face shift signifies that water at the hydrophobic surface
is a “better dielectric” than at the hydrophilic surface.
For the perpendicular profile, the width of the dielec-



Langmuir 28, 7679–7694 (2012) 12

tric variation has been defined earlier in a similar way
[7, 8]. The difference between the two definitions is that
zdds⊥ as defined in Eq. 42 guarantees that the electro-
static potential far away from the interface is correctly
reproduced. This can be seen by realizing that zdds⊥ cor-
responds to the position where the extrapolated linear
fits to the solid and bulk liquid potential profile cross
each other, see Fig. 11 (a). Using ∇ψ (z) = −E⊥ (z)
and Eqs. 4 and 42, the electrostatic potential difference
between liquid and solid is given by

ψ (zl)− ψ (zs) = −
D⊥

ε0

∫ zl

zs

ε−1
⊥ (z) dz

= −
D⊥

ε0

(

∫ zdds
⊥

zs

dz +

∫ zl

zdds
⊥

dz

εbulk

)

,

(43)

for a constant displacement field D⊥. Therefore, using a
sharp-kink approximation of the dielectric profile,

ε⊥ (z) =

{

1 if z < zdds⊥

εbulk otherwise,
(44)

ensures the correct asymptotic voltage profile far away
from the interface. To compare the dielectric interface
position with the Gibbs dividing surface, the density
profile and the Gibbs dividing surface zgds are shown
in Fig. 11 (b). In Fig. 11 (c), we show the positions
of zgds and zdds⊥ , showing a mild dependence on the ex-
ternal displacement field strength. For all values of the
external displacement field, the dielectric dividing sur-
face is located close to the Gibbs dividing surface at
the hydrophilic surface, displaced slightly into the fluid,
whereas at the hydrophobic surface, the dielectric inter-
face is shifted towards the solid surface. The perpendic-
ular dielectric interface shift, defined as δ⊥ = zdds⊥ −zgds,
is shown in Fig. 11 (d). At the hydrophilic surface, the
dielectric interface shift slightly declines at high exter-
nal field strength, which means that the water becomes
a slightly better dielectric. At the hydrophobic surface,
however, the dielectric interface shift not only depends
on the applied field strength, but also on the field direc-
tion, in line with our results for the dielectric profiles.

Table 1: Dielectric and Gibbs dividing surfaces of the two
different surface types measured with respect to the positions
of the outermost heavy atoms.a

Surface type zgds (nm) zdds
‖ (nm) zdds

⊥ (nm)

Hydrophilic 0.07 0.09 0.10

Hydrophobic 0.22 0.08 0.12

a
I.e. the oxygen atoms of the hydroxyl groups at the hydrophilic

surface and the carbon atoms at the hydrophobic surface.

Surface
type

Hydrophilic

Hydrophobic
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Figure 13: Capacitance of the double layer, from Eq. 52 and
the solution to the Debye-Hückel equation (Eq. 53). The
black lines are calculated assuming bulk permittivity in the
entire fluid and µ (z) = 0 (solid line) or µ (z) = exp [1− z/λ]
(dotted line). The blue lines (hydrophilic) and red lines (hy-
drophobic) are calculated using different approximations for
the dielectric properties: the full profile ε−1

⊥ (z) or the sharp-
kink approximation of Eq. 44 at either the dielectric dividing
surface zdds⊥ or the Gibbs dividing surface zgds.

The trend as a function of field strength, however, is to
increase δphob⊥ , which means that the dielectric becomes
slightly worse.

� Poisson-Boltzmann equation. We consider a
charged planar surface with monovalent counterions,
where the charge density is laterally averaged and only
depends on the z direction. For a charged surface with
counterions in solution neither E (z) nor D (z) is con-
stant, so the integral of Eq. 3 does not yield a local
dielectric function automatically. Therefore, inspired by
Eq. 4, we assume

ε0E⊥ (z) = ε−1
⊥ (z)D⊥ (z) , (45)

which is a good approximation whenD⊥ (z) varies slowly,
i.e. at low salt concentration and at low surface charge
density. Taking the divergence of Eq. 45 and using
∇ψ (z) = −E⊥ (z) leads to

ε0
d2ψ

dz2
= −D⊥ (z)

dε−1
⊥

dz
− ε−1

⊥ (z)
dD⊥

dz
. (46)

Inserting the Boltzmann expression for the ion density,

dD⊥

dz
= P0 (z) = −2ec0 sinh [−βeψ (z)] exp [−µ (z)],

(47)
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c+/c0 c  /c0

Figure 12: (a)–(c) The electrostatic potential next to a charged surface (σ0 = −0.006 e/nm2), calculated from the Poisson-
Boltzmann equation (Eq. 48) and different models of the dielectric function ε−1

⊥ (z). Curves are shown for the hydrophilic
profile (left), the hydrophobic profile (middle), and ε−1

⊥ (z) = ε−1

bulk
(right). The bulk salt concentration is c0 = 100 mM. (d)–

(f) The perpendicular electric field E⊥ (z) and the perpendicular displacement field D⊥ (z) /ε0. (g)–(i) The corresponding
ionic density profiles c+ (positive ions, solid lines) and c− (negative ions, dashed lines), normalized on the bulk density c0.
We have used either no nonelectrostatic potential (µ (z) = 0) or the repulsive potential of Eq. 51 (µ (z) = exp [1− z/λ] with
λ = 0.15 nm).

with c0 the ionic concentration in bulk, we arrive at the
modified Poisson-Boltzmann equation,

ε0
d2ψ

dz2
= −D⊥ (z)

dε−1
⊥

dz
+

2ec0 sinh [−βeψ (z)] exp [−µ (z)] ε−1
⊥ (z) .

(48)

The potential µ (z) contains all nonelectrostatic contri-
butions from the interface, such as steric and solvophobic
effects. The displacement field in the first term of Eq. 48
is calculated from

D⊥ (z) =

∫ z

0

P0 (z
′) dz′, (49)

making Eq. 48 a second-order integro-differential equa-
tion. Eqs. 47–49 are solved numerically, imposing a fixed
surface charge density σ0 as a boundary condition at
z = 0. The position z = 0 corresponds to the oxygen
atoms at the hydrophilic surface and to the outermost
carbon atom at the hydrophobic surface.
� Electrostatic potential. We calculate the electro-
static potential close to a surface carrying a minute sur-
face charge density σ0 = −0.006 e/nm2 (−1 mC/m2) at

a salt concentration of 100 mM (0.1 mol/l). The effect
that the finite salt concentration may have on the dielec-
tric profile ε⊥ (z) can be expressed in terms of the ionic
excess polarizabilities ∆α±,

ε⊥ (z) = ε⊥,h2o (z) +
c+ (z)∆α+

ε0
+
c− (z)∆α−

ε0
, (50)

with ε⊥,h2o (z) the pure water profile that we have cal-
culated. In the following we set ∆α± = 0, which means
that any effect that the finite salt concentration may have
on the profile ε−1

⊥ (z) is ignored. The electrostatic poten-
tial is shown in Fig. 12 (a)–(c) for two different choices of
µ (z): without a nonelectrostatic interaction, µ (z) = 0,
and including a generic soft-wall repulsion, modeled by

µ (z) = γ exp [1− z/λ], (51)

with λ being the size of a typical ionic radius, λ =
0.15 nm and γ = 1. Strikingly, the electrostatic potential
at the hydrophobic interface changes sign between 0.2
and 0.4 nm from the wall, locally enhancing the concen-
tration of co-ions. This means that, locally, the charge on
the surface is overscreened by the sum of polarization and
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ionic charges, a phenomenon that is well known to occur
in ionic liquids as well [42]. In Fig. 12 (d)–(f) we plot
the corresponding perpendicular electric field E⊥ (z) and
the perpendicular displacement field D⊥ (z) /ε0. Impor-
tantly, the displacement field D⊥ (z) varies more slowly
than the electric field E⊥ (z), which justifies the use of
the local approximation of Eq. 45. The ionic densities
c± (z) = c0 exp [∓βeψ (z)− µ (z)] are plotted in Fig. 12
(g)–(i), clearly showing the effect of overscreening at the
hydrophobic surface. Remarkably, when the dielectric
profile is used instead of εbulk, the ions accumulate closer
to the surface. The soft-wall repulsion, however, pushes
the ions away from the surface, although its effect on the
electrostatic potential profile is minor. That means that
in cases where the nonelectrostatic repulsion is less pro-
nounced, we expect the counterions to be strongly bound
to the surface because of dielectric effects.
� Capacitance of the double layer. The double-
layer structure of the charged interface and its counte-
rion cloud gives rise to a capacitance. The vast amount
of experimental data on interfacial capacitances provides
a direct test of the model for the dielectric profile. Be-
cause the point of vanishing surface potential ψ0 = ψ (0)
is hard to determine and because the capacitance may
depend on the surface potential, the differential capaci-
tance is generally reported,

C =
dσ0
dψ0

. (52)

We calculate the differential capacitance of a Poisson-
Boltzmann distribution of ions next to a charged surface,
comparing the models for the dielectric profile discussed
above. Using the nonlinear Poisson-Boltzmann equation,
the differential capacitance depends on the surface charge
density, but using the Debye-Hückel approximation, the
differential capacitance is constant and equal to the ca-
pacitance from the nonlinear Poisson-Boltzmann equa-
tion in the limit σ0 → 0. The Debye-Hückel limit is
obtained by approximating Eq. 48 for small ψ (z),

ε0
d2ψ

dz2
= −D⊥(z)

dε−1
⊥

dz
−2ec0βeψ (z) exp [−µ (z)]ε−1

⊥ (z) ,

(53)
which has to be solved together with Eq. 49. In Fig. 13,
we show the double-layer capacitance using the different
models for the interfacial dielectric properties discussed
above, comparing the results to experimental data. The
blue circles in Fig. 13 denote experimental data on sur-
faces that are known to be hydrophilic (contact angle
below 90◦), the red circles denote data on hydrophobic
surfaces, and the black circles denote data on surfaces
of which the contact angle is unknown. The electrolytes
used in the experiments are sulfuric acid (h2so4) and
potassium hydroxide (koh). Further details and refer-
ences are listed in the Appendix. As a first model, we
show the differential capacitance of Eq. 52 as a func-
tion of salt concentration c0 using a dielectric constant

equal to εbulk and µ (z) = 0 (black solid line), which
overestimates the experimental data by at least an oder
of magnitude. This discrepancy led Stern to propose a
model where a thin layer at the interface has a lower
dielectric constant than the bulk fluid [13]. Second, we
include the generic soft-wall repulsion given in Eq. 51,
with λ = 0.15 nm and γ = 1. The capacitance, shown
as a black dotted line, captures neither the trend nor
the magnitude of the experimental data much better.
Third, we use our calculated full dielectric profile ε−1

⊥ (z)
(shown in Fig. 3) with µ (z) = 0 (solid colored lines),
agreeing much better with experiments. The hydrophilic
profile (blue) yields a slightly higher capacitance than
the hydrophobic profile (red) for low salt concentration,
which is generally expected because of the better wetting
characteristics [50]. The difference is minor, however, be-
cause the dielectric interface shift δ⊥ largely compensates
for the depletion gap at hydrophobic surfaces. Fourth,
we use the sharp-kink approximation of Eq. 44 with
µ (z) = 0 (dashed colored lines). The results are al-
most indistinguishable from the curves calculated using
the full profiles ε−1

⊥ (z), as expected from the fact that
the dielectric dividing surface is designed to reproduce
the electrostatic potential far away from the interface.
Nevertheless, the calculated capacitance is still relatively
high compared to the experimental data, which has to do
with the fact that in the Poisson-Boltzmann approach
the point-charge ions are allowed to get arbitrarily close
to the surface. Therefore, as a fifth model, we use the
sharp-kink approximation of Eq. 44 together with µ (z)
from Eq. 51, shown as dotted colored lines. Clearly, this
model follows the experimental data very well. Values of
the calculated capacitance can be adjusted by fine-tuning
the parameters γ and λ, which are expected to depend
on the surface and ion type. Finally, we show the capac-
itance using a sharp-kink approximation for ε−1

⊥ (z) lo-
cated at zgds (dash-dotted lines), which does not perform
as well as the sharp-kink approximation located at zdds⊥ .
In fact, using the Gibbs dividing surface, the difference
between hydrophilic and hydrophobic surfaces is quite
large for low salt concentration, which does not seem to
be reflected in the experimental data. Turning this argu-
ment around, the approximate equality of experimental
data for the double-layer capacitance on hydrophilic and
hydrophobic surfaces displayed in Fig. 13 can be viewed
as a confirmation of one of the main results of the present
work, namely that the effect of the depletion layer at hy-
drophobic surfaces is largely compensated for by the di-
electric properties of the first few interfacial water layers,
effectively yielding dielectric properties similar to those
at hydrophilic surfaces.

� Effective Stern layer permittivity. Within the orig-
inal Stern model of a charge-free interfacial region of
width d with dielectric constant εint, the capacitance
turns out to be CStern = σ0/ψ0 = εintε0/d. The same
model yields Cbulk = εbulkε0/d when the bulk value
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ε = εbulk is assumed for the interfacial dielectric con-
stant. Therefore the capacitance ratio reflects the ratio
of interfacial dielectric constants,

CStern

Cbulk
=

εint
εbulk

. (54)

By imposing Eq. 54 and dividing the capacitance which
follows from the solution of the Poisson-Boltzmann equa-
tion including the dielectric profile ε−1

⊥ (z) by the capac-
itance using the bulk assumption ε−1

⊥ (z) = ε−1
bulk, the

estimate for εint varies between 10 and 30, depending
on salt concentration, which corresponds well to earlier
estimates based on experimental data [11, 12]. Our re-
sults present a microscopic picture of the electrostatic
properties of the interfacial layer, allowing for the anal-
ysis of not only the double-layer capacitance, but also
other properties, such as the electrostatic pressure be-
tween two plates as a function of separation, as will be
detailed next.
� Disjoining pressure between charged plates. We
determine the disjoining pressure between two plates
from the free energy F calculated using the Poisson-
Boltzmann equation [51, 11, 52, 53],

βF = βσ0ψ0+
∫

βψ (z)

2
P0 (z) +

∑

±

c± (z)

[

µ (z) + ln
c± (z)

c0
− 1

]

dz,

(55)

with σ0 being the surface charge density, ψ0 =
ψ (0) the potential at the wall and c± (z) =
c0 exp [∓βeψ (z)− µ (z)] being the ionic densities. The
potential ψ (z) is calculated from the nonlinear Poisson-
Boltzmann equation given in Eq. 48. The first term in
Eq. 55 comes from the surface integral over the electro-
static energy of the surface charge density. The pressure
p(d) between two plates at separation d is given by

β p(d) = −
dβF

dd
− 2c0. (56)

For the dielectric profile between the two plates, we
join the ε−1

⊥ (z) profiles from both surfaces piecewise to-
gether. The resulting pressure is shown in Fig. 14 for a
100 mM monovalent salt solution and a surface charge of
−0.006 e nm−2 (−1 mC/m2). Compared to a spatially
constant bulk dielectric function (black solid line), the
pressure is lower when the full dielectric profile ε−1

⊥ (z)
(solid colored lines) or the sharp-kink approximation of
Eq. 44 (colored dashed lines) is used. Therefore, mod-
ifications of the pressure between charged surfaces due
to dielectric surface effects cannot explain, and proba-
bly are also not related to, the exponentially decaying
short-ranged hydration repulsion, which is found exper-
imentally and theoretically between all kinds of polar
surfaces [30, 54]. On the basis of a mean-field type in-
terpretation (without taking the dielectric profile into ac-
count) of pressures obtained within atomistic simulations

Figure 14: Pressure between two like-charged hydrophilic and
hydrophobic plates as a function of the distance d between the
plates, calculated from Eqs. 55 and 56 using different models
for the dielectric profiles ε−1

⊥ (z). The surface charge density
is σ0 = −0.006 e nm−2.

of charged surfaces, the hydration repulsion has been as-
sociated with dielectric effects [55]. This differs from our
findings, according to which dielectric effects decrease
the pressure between charged surfaces and therefore the
hydration repulsion must come from solvation effects not
directly connected to dielectric properties. Interestingly,
the repulsion at short distances in Fig. 14 is found to be
smaller between hydrophobic surfaces than between hy-
drophilic ones. It is important to note that the pressures
derived from the modified Poisson-Boltzmann equation
shown in Fig. 14 do not include hydration or solvophobic
effects and consequently vanish for zero surface charge
density; so the message is that the dielectric profile can-
not explain the hydration repulsion (which acts also be-
tween neutral surfaces) but nevertheless influences the
electrostatic part of the double-layer pressure, and in
fact makes the pressure between similarly charged sur-
faces less repulsive.

� Ion-surface interactions. Correlated electrostatic
effects such as the image charge repulsion at a dielec-
tric boundary cannot be treated on the mean-field level.
However, for a single, finite-sized ion crossing a dielec-
tric boundary, the image charge repulsion has been cal-
culated in Refs. [56, 57], involving the effective dielectric
radius of the ion. Tentatively, free energies calculated
this way may be included as a correction to the mean-
field potential similar to the heuristic potential µ± (z).
The image charge repulsion depends on the ionic radius,
but ionic radii inferred from crystal structures are too
small and consistently overestimate hydration free ener-
gies. To reproduce the Born solvation free energy, the
distance between the ion and the first water dipole has
to be added to the crystal radius as explained in Refs.
[58, 59] and references therein. Motivated by our re-
sults for the planar interface, which show that density
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Figure 15: (a) Sketch of an ion with cavity radius λc (blue
dashed line) and dielectric radius λd (red dotted line). Also
shown are sketches of (b) a hydrophilic and (c) a hydrophobic
surface with their respective Gibbs (blue dashed lines) and
dielectric dividing surfaces (red dotted lines).

and dielectric properties give rise to two distinct and
largely independent length scales, we propose a model
for the ionic interaction with surfaces that distinguishes
between dielectric and nonelectrostatic solvation-induced
ion-surface interactions. Similar to the Gibbs and dielec-
tric dividing surfaces at planar interfaces, we introduce
the ionic cavity radius λc and the dielectric radius λd, see
Fig. 15. The expression for the image potential is taken
directly from Ref. [57]. We define the distance to the
dielectric dividing surface position zdds⊥ as z′ = z − zdds⊥ .
For z′ > λd, the image potential of a monovalent ion is
given by

Ui (z
′) =

βe2

32π λd ε0ε1

[

4 +
(ε1 − ε2)

(ε1 + ε2)

2λd
z′

+

(ε1 − ε2)
2

(ε1 + ε2)
2

(

2λ2d
λ2d − (2z′)

2 +
λd
2z′

ln
2z′ + λd
2z′ − λd

)]

,

(57)

and for 0 < z′ < λd by

Ui (z
′) =

βe2

32π λd ε0ε1

[

2 +
2z′

λd
+
ε1 − ε2
ε1 + ε2

(

4−
2z′

λd

)

+

(ε1 − ε2)
2

(ε1 + ε2)
2

[

(λd + z′) (λd − 2z′)

λ2d + 2z′λd
+
λd
2z′

ln
2z′ + λd
λd

]

]

+

βe2

16π λd ε0ε2

(

2ε2
ε1 + ε2

)2(

1−
z′

λd

)

.

(58)

The permittivities are ε1 = εbulk and ε2 = 1 for z′ > 0.
For z′ < 0, the same expressions can be used with ε1 = 1
and ε2 = εbulk. Because we calculate the energy with
respect to a position in the bulk water, we subtract the
Born energy Ub = e2/8πλdε0εbulk from Ui. In addition
to the image potential, the ions are subject to a hydra-
tion potential, scaling with the hydrated volume of the
ion [60, 61, 62, 63]. To calculate the ionic volume, we use
the cavity radius λc. Whereas the image potential acts
with respect to the dielectric dividing surface, the hy-
dration potential acts with respect to the Gibbs dividing

surface. These surface positions appear in different order
at hydrophilic and hydrophobic surfaces. The hydration
energy is calculated from

Uh(z
′′) =







− 4π
3 λ

3
cβC if z′′<−λc

0 if z′′> λc
−π

3 (λc − z′′)
2
(z′′+ 2λc)βC otherwise,

(59)
with z′′ = z − zgds and C = 2.8× 10−19 J/nm3 [60]. We
calculate the interaction potential of a single ion next to
a dielectric boundary as the sum of the hydration energy
and the image potential, U (z) = Uh (z) + Ui (z)− Ub.

In Fig. 16 we plot the calculated energy as a function
of z for (a) a hydrophilic surface and (b) a hydropho-
bic surface, for a small and a big ion. For the small
ion, the cavity radius λc = 0.15 nm and the dielectric
radius λd = 0.25 nm, and for the big ion λc = 0.2 nm
and λd = 0.3 nm. We choose the dielectric radii larger
than the cavity radii, reflecting the fact that radii in-
ferred from the solvation free energy via the Born energy
Ub are larger than cavity radii measured with diffrac-
tion methods [59]. It also conforms to our result that
the dielectric dividing surface is displaced towards the
water phase compared to the Gibbs dividing surface at
hydrophilic surfaces. The curves clearly reflect the well-
known positive correlation between ion size and adsorp-
tion onto the surface, meaning that larger ions show a
larger surface propensity compared to small ions. In-
terestingly, this simple model already shows a striking
difference between hydrophilic and hydrophobic surfaces,
which has recently been found in simulations as well [64].
Because zgds > zdds⊥ at the hydrophobic surface, the
influence of the attractive hydration potential is much
more pronounced than at the hydrophilic surface. For
ions of λc = 0.2 nm, the hydration potential at the
hydrophobic surface even dominates the interaction for
0.09 < z < 0.26 nm, which means that big ions adsorb
onto hydrophobic surfaces, but not onto hydrophilic sur-
faces. For distances of ∼ 0.3 nm from the interface, all
potentials resemble the exponential function used previ-
ously for µ± (z).

5 Conclusion

We have established the theoretical framework to cal-
culate the dielectric response tensor at an interface from
molecular fluctuations and from an applied external field.
Whereas the parallel response can be calculated from
the dipole moment only and roughly follows the den-
sity profile, the perpendicular response exhibits several
singularities that can only be captured properly when
higher-order multipole moments are taken into account.
For the perpendicular dielectric response, the linear re-
sponse regime extends to an external field strength of at
least D⊥/ε0 =∼ 2 V/nm, after which the response at
the hydrophobic interface becomes nonlinear. Because
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Figure 16: Ionic free energy U (z) = Uh (z) + Ui (z) − Ub

at (a) a hydrophilic surface and (b) a hydrophobic surface,
calculated from Eqs. 57-59. At the hydrophilic surface zdds⊥ =
0.10 nm and zgds = 0.07 nm, at the hydrophobic surface
zdds⊥ = 0.12 nm and zgds = 0.22 nm. The ions have a cavity
radius of λc = 0.15 nm and λc = 0.2 nm and the dielectric
radii λd are 0.1 nm larger.

at timescales larger than ∼ 10 ns, dielectric breakdown
in real water occurs at field strengths one order of magni-
tude lower, the nonlinear response of the nonpolarizable,
nonionizable water model that we use in our simulations
is not expected to play a role in the dielectric response
of real water. Including the dielectric profile in a mean-
field description of ion distributions at a charged inter-
face, the experimental double-layer capacitance can be
well reproduced. In particular, this shows that the Stern
layer is predominantly caused by the dielectric interfa-
cial features of water itself. Additionally accounting for
the repulsive ion-substrate interaction, corresponding to
steric exclusion of ions from the direct proximity of the
wall, further improves the agreement with experimental
data, but these direct ion-surface interactions are not
decisive for the features seen in the experimental capac-
itance data. We quantify the difference between the di-
electric response at hydrophilic and hydrophobic surfaces
in terms of a single length scale that we call the dielectric
dividing surface. Using this length scale, we find that the
experimental similarity between the double-layer capaci-
tance at both surface types can be rationalized very sim-
ply: although a pronounced depletion layer exists at the
hydrophobic interface, and therefore less water is avail-
able than at the hydrophilic interface, the dielectric di-
viding surface position is very similar at both surface
types, measured with respect to the top layer of heavy
substrate atoms. In other words, water at the hydropho-
bic surface is a “better dielectric” than at the hydrophilic
surface. From the same mean-field description, we find
that the effect of the dielectric profile is to decrease the
disjoining pressure between two charged plates. Dielec-
tric interface effects therefore cannot explain the univer-
sally observed hydration repulsion between polar surfaces
directly. Finally, a simple model for the adsorption of
spherical ions at interfaces that distinguishes between
dielectric and depletion effects, both at the planar inter-

faces and around the ions, reveals the characteristic dif-
ference between adsorption at hydrophilic and hydropho-
bic surfaces. In particular, it predicts the adsorption of
large ions onto hydrophobic surfaces, but not onto hy-
drophilic surfaces. In future research, the effect of ions
and finite surface separation on the dielectric profile and
the consequences of the full dielectric profile on the ionic
free energy need to be addressed in order to understand
the interaction of charged and neutral surfaces in full
detail.

Appendix

This Appendix contains an overview of published experi-
mental values of the double-layer capacitance on various
carbon-based surfaces in aqueous electrolytes. The ca-
pacitance of the electrical double layer is measured using
cyclic voltametry or ac impedance spectroscopy. The ac-
cessible surface area is determined using n2 adsorption.

In the tables below, we grouped the different mea-
surements based on the contact angle in aqueous solu-
tion. When below 90◦, the substrate is classified as hy-
drophilic (listed in Tab. A1), otherwise as hydrophobic
(listed in Tab. A2). Materials of which the contact angle
is unknown or unclear are displayed in Tab. A3. All data
are plotted as a function of electrolyte concentration in
Fig. A1. The scattering in the data between substrates
and electrolytes is larger than the structural difference
between hydrophilic and hydrophobic substrates. Never-
theless, when a specific substrate is modified to become
more hydrophilic, for example using functional groups or
doping, the double-layer capacitance increases [50, 65].
In addition, we show the limiting “bulk” value of the dif-
ferential double-layer capacitance C = dσ0/dψ0, calcu-
lated from the Debye-Hückel equation (Eq. 53, using the
bulk dielectric constant ε−1

⊥ (z) = ε−1
bulk with εbulk = 71

for the entire fluid and µ (z) = 0). For all substrates, the
capacitance is much lower than the bulk value.

Many of the materials used for double-layer capaci-
tors belong to the class of so-called activated carbons,
which are treated with a gas plasma or a strong acid or
base solution to make the surface more porous. While
increasing the total capacitance of the sample, activa-
tion of a carbon surface often decreases the capacitance
per unit surface area dramatically [66, 67]. Although
the mechanism leading to this decrease is unclear, we
can safely assume that a part of the additional surface
area created by the activation process is inaccessible to
the electrolyte, and therefore does not contribute to the
double-layer capacitance. Because of these poorly de-
fined surface characterisics, the experimental data on ac-
tivated carbon substrates is discarded in our comparison,
and Fig. 13 contains the data from Tabs. A2, A1 and
A3 only.
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Figure A1: Double-layer capacitance as a function of bulk
concentration, showing all data points from Tabs. A2, A1,
A3 and A4, as well as the bulk value of the capacitance, cal-
culated using εbulk = 71 and µ (z) = 0.

Table A1: Double-layer capacitance of hydrophilic carbon-based materials.

Surface material Contact angle Electrolyte Concentration Capacitance Ref.

(◦) (M) (µF/cm2)

Carbon fibers 24 - 37 [68] H2SO4 0.5 6.0 [69]a

7.5

9.2

12.9

Carbon-coated Al2O3 57 H2SO4 1 7.0 [65]

Nitrogen-doped 41 11.4

Boron-doped 60 12.9

Oxidated polyvinylpyridine 45 - 67 H2SO4 1 13.2 [70]

Blend with coal tar pitch [71, 72] 14.3

aDifferent values correspond to different commercial samples (untreated).
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Table A2: Double-layer capacitance of hydrophobic carbon-based materials.

Surface material Contact angle Electrolyte Concentration Capacitance Ref.

(◦) (M) (µF/cm2)

Boron-doped diamond > 90 [73] H2SO4 0.1 3.7 [74]a

7.1

KCl 0.1 3.4

4.5

NaNO3 0.1 3.8

6.3

NaOH 0.1 3.9

4.8

Carbide-derived carbon > 90 [75] H2SO4 2 11.4 [76]

TiC, TiC & SiC/TiC 13.8

11.8

Graphite 98 [77] KOH 6 17.5 [78]b

16.7

19.2

25.9

33.9

41.6

51.4

64.0

Graphene nanosheets 127 [77] KOH 7.6 29 [79]

26

52

Carbon black H2SO4 1 8 [80]

Graphite powder NaCl 5.6 35

aThe different values correspond to AC impedance and cyclic voltametry measurements, respectively.
bThe surface area of natural graphite was increased using ball-milling; different values correspond to different milling times.
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Table A3: Double-layer capacitance of materials with unknown contact angle.

Surface material Electrolyte Concentration Capacitance Ref.

(M) (µF/cm2)

Porous carbon H2SO4 1 5.3 [81]

Porous carbon with polyaniline 9.0

Silica-templated mesoporous carbon H2SO4 1 12.8 [70]

10.1

7.4

9.3

11.4

9.4

Silica-templated mesoporous carbon H2SO4 1 7.3 [82]

2 14 [83]

2 13 [84]

Silica-templated mesoporous carbon H2SO4 1 10.2 [85]

10.6

10.7

10.9

KOH 6 9.8

10.9

8.9

10.6

Mesoporous carbon with NiO KOH 2 18.2 [86]

Carbon aerogel KOH 4 23 [80]

KOH 6 28.5 [87]

Porous carbon KOH 6 33 [67]

Self-ordered mesoporous carbon LiPF6 1 10 [88]

Nitrogen-containing mesoporous carbon KOH 6 39.2 [66]

Ordered mesoporous carbon 10.0

Porous carbon from cabonization KOH 6 20.8 [89]

of poly(vinylidene chloride) 22.0

20.8

18.2

15.2

12.9

Diamond film NaCl 0.5 3.7 [90]a

Polyacrylonitrile H2SO4 1 24.9 [70]

Blend with coal tar pitch 20.3

17.5

TiC/TiO2 H2SO4 2 14.8 [76]

Carbon composite from waste paper KOH 6 43.2 [87]

aAfter equilibration in electrolyte, assuming complete wetting at the maximum of the capacitance.
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Table A4: Double-layer capacitance of different kinds of activated carbons.

Surface material Electrolyte Concentration Capacitance Ref.

(M) (µF/cm2)

CO2 activated porous carbon KOH 6 13 [67]

9.6

KOH activated porous carbon 10

8.8

Nitrogen-containing mesoporous KOH 6 26.2 [66]

carbon, activated with KOH 13.7

11.3

Ordered mesoporous carbon, KOH 6 11.2 [66]

activated with KOH 12.7

12.4

KOH-activated carbon H2SO4 1 20.4 [91]

25.1

26.9

NaOH-activated carbon 24.7

25.0

28.9

Wood origin HNO3-activated carbon H2SO4 1 11.6 [92]

10.3

19.1

25.5

23.0

32.6

Activated carbon NaCl 5.6 19 [80]

O2-activated carbon fibers 6.6 [69]

7.0

9.1

13.2
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