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� Abstract. We calculate the electro–osmotic mobility and surface conductivity at a solid–liquid interface from a
modified Poisson–Boltzmann equation, including spatial variations of the dielectric function and the viscosity that
where extracted previously from molecular dynamics simulations of aqueous interfaces. The low–dielectric region
directly at the interface leads to a substantially reduced surface capacitance. At the same time, ions accumulate
into a highly condensed interfacial layer, leading to the well–known saturation of the electro–osmotic mobility
at large surface charge density regardless of the hydrodynamic boundary conditions. The experimentally well–
established apparent excess surface conductivity follows from our model for all hydrodynamic boundary conditions
without additional assumptions. Our theory fits multiple published sets of experimental data on hydrophilic and
hydrophobic surfaces with striking accuracy, using the nonelectrostatic ion–surface interaction as the only fitting
parameter.

1 Introduction

When immersed in water, particles typically acquire a
net surface charge, which is compensated for by a cloud
of counterions in solution. This surface charge usually
dominates the interactions between particles in colloidal
suspensions. The bare surface charge density can be mea-
sured using charge titration [1]. It is well established,
however, that the bare surface charge density cannot
be used directly in classical models to describe dynamic
properties of colloidal suspensions, such as coagulation
kinetics, electro–osmotic mobility and effective viscos-
ity [2, 3, 4, 5]. Instead, the ions and water molecules
within a few molecular diameters from the surfaces of
the colloidal particles decisively affect the suspension’s
macroscopic kinetic behavior. A deep understanding of
the relation between bare surface charge, electro–osmotic
mobility and the closely related phenomenon of surface
conductivity is of supreme importance in many areas
of physical chemistry. For instance, electrophoresis is
commonly used in modern–day biochemistry for separa-
tion of chemicals based on minute differences in surface
properties [6]. Furthermore, electrokinetic driving is the
method of choice to generate flow in microfluidic devices
[7, 8], which are becoming ever more popular tools for
biochemical analysis and clinical pathology. On a much
larger scale, seismic activity in water–saturated soil pro-
duces electrokinetic signals, which are found to precede
large earthquakes [9] and can be exploited for seismic
imaging of the sub–surface [10]. Finally, the electrostatic

and hydrodynamic properties of the colloid – water inter-
face determine the stability of colloidal systems [11, 12],
which is a crucial factor in many branches of chemical
industry, such as those dealing with food, water purifi-
cation, pharmaceuticals, paints, and ceramics. To com-
prehend and control the macroscopic behavior of each of
these systems, detailed knowledge of the hydrodynamic
and electrostatic properties of the interfacial molecular
layers is indispensable. Despite the immense practical
and fundamental interest, however, the effect of these
microscopic properties on macroscopic kinetics is poorly
understood.

Electrokinetic measurements in controlled environ-
ments are a particularly sensitive tool to assess the dy-
namic properties of interfacial layers. The basic model
for an electrolyte in contact with a surface carrying an
immobilized bare surface charge density σ0 is sketched in
Fig. 1 (a). Driven by a tangential electric field E‖, coun-
terions move along the surface, dragging water molecules
along. This electro–osmotic flow profile u‖ (z) can be
used to estimate the “electrokinetically active” surface
charge density σek, using the Gouy–Chapman model and
the Stokes equation with a no–slip boundary condition.
At the same time, the electric conductivity of the in-
terfacial fluid is higher than the bulk conductivity due
to the presence of counterions [13, 14], to an extent
that is usually expressed by the Dukhin number [15].
In conjunction with a suitable model, this surface con-
ductivity can be used as an alternative way of estimat-
ing the surface charge density [16], leading to the con-
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Figure 1: Sketch of the basic model and general features of ex-
perimental data. (a) An electric field E‖ parallel to a surface
with bare charge density σ0 produces an electro–osmotic flow
profile u‖ (z), from which the electrokinetic surface charge
density σek is calculated. The conductive surface charge den-
sity σc is calculated from the electric current I in response to
E‖. (b) σek is experimentally found to saturate as a function
of σ0; saturation occurs at higher values for hydrophobic sur-
faces than for hydrophilic surfaces. (c) σc is larger than σek
at all surface types. (d) When the bulk salt concentration c0
is raised, σek increases at hydrophobic surfaces, and decreases
at hydrophilic surfaces.

ductive surface charge density σc. Clearly, the precise
values of σek and σc are highly model–dependent, and
typically σ0, σek and σc do not agree. As a specific nu-
merical example we consider silica nanochannels, where
measuring the electrokinetic surface charge density us-
ing the streaming current at low salt concentration gives
σek = −4 mC/m2 [17]. Calculating the conductive sur-
face charge density in the same type of channels from
measurements of the electric conductance, on the other
hand, yields σc = −50 mC/m2 [16], whereas the litera-
ture value for the bare charge density of silica, calculated
from titration at pH = 8 and a bulk salt concentration of
1 mM, is even higher, σ0 = −100 mC/m2 [1]. This exam-
ple shows that the discrepancies mentioned are not small
corrections, but major effects. In particular, three puz-
zling, but universal experimental trends for σ0, σek and
σc have impeded the advancement of colloidal science in
the past. First, the electrokinetic surface charge density
σek is found to saturate as a function of the bare surface
charge density σ0, independent of surface roughness or
polarity [3, 18, 19], see the sketch in Fig. 1 (b). Tra-
ditionally, this issue has been rationalized by invoking a

spatially inhomogeneous viscosity profile at the interface
[19]. Assuming a hydrodynamically stagnant interfacial
water layer, the calculated electrokinetic surface charge
density σek is found to agree with experiments [18]. Us-
ing this model on hydrophobic interfaces, however, where
the fluid is known to slip along the surface [20], the elec-
trokinetic surface charge density exceeds the bare surface
charge density, contrary to experimental evidence. Sec-
ond, the conductive surface charge density σc is found
to exceed the electrokinetic surface charge density σek
[16, 17, 21, 22, 23, 24, 25], see Fig. 1 (c). This excess
surface conductivity is referred to as anomalous surface
conduction, and is found for all systems, independent of
surface composition [24, 25, 26]. Traditionally, the excess
surface conductivity is rationalized by the awkward as-
sumption that the ions in the hydrodynamically stagnant
layer still conduct charge [3, 15, 24, 25, 27, 28, 29, 30],
which is clearly at odds with physical intuition. Third,
whereas the electrokinetic surface charge density σek in-
creases with increasing bulk salt concentration c0 at hy-
drophobic surfaces, such as silver iodide, it decreases at
hydrophilic surfaces, such as titanium oxide and iron
oxide–hydroxide [3, 18], see Fig. 1 (d).

The experimental results described above cannot be
explained within the classical model of a dilute solu-
tion of pointlike charges with spatially constant viscos-
ity and dielectric constant. At high salt concentration
and high surface charge density, several modifications of
the classical model have been taken into account pre-
viously, primarily in the context of induced–charge elec-
trokinetics [31]. Examples include steric interactions due
to crowding of ions [32], electric–field induced viscosity
increase near charged interfaces [19] and electric–field in-
duced dielectric saturation [33]. Apart from the effects
of high salt concentration and strong electric fields, how-
ever, the dielectric and viscous properties of the interfa-
cial water layers differ from the bulk properties because
of the pronounced structuring of the interfacial water.
These molecular properties of interfacial water have only
recently become accessible due to the advancement of
molecular dynamics simulations.

In this paper, we include the variation of the dielec-
tric function, which has been shown to work well in the
description of interfacial capacitance [34], as well as the
variation of the viscosity at the interface on the mean–
field level. The profiles of the dielectric function and the
viscosity are based on the results of molecular dynamics
simulations of typical hydrophilic and hydrophobic sur-
faces in contact with pure water [35, 36]. Including a
low–dielectric layer at the surface leads to accumulation
of counterion charge close to the interface, thereby reduc-
ing the electro–osmotic flow independent of the hydrody-
namic boundary conditions. The relation between coun-
terion condensation enhancement and saturation of the
electrophoretic mobility has been established earlier for
branched polymeric particles of roughly spherical shape
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[37]. In contrast, the surface conductivity is affected less
by the ion condensation, explaining the discrepancies be-
tween the bare, conductive, and electrokinetic surface
charge densities.

2 Mobility and Conductivity

We consider a charged planar surface in contact with
water, having translational invariance in the x and y di-
rections. Throughout the paper, the symbols ‖ and ⊥
refer to the directions parallel and perpendicular to the
surface, respectively. The dielectric tensor, the viscosity,
the electric field and the displacement field only depend
on the perpendicular coordinate z.

� Electrokinetic surface charge density. For laminar
flows, the electro–osmotic flow velocity profile u‖ (z) in
response to a parallel electric field E‖ is calculated from
the Stokes equation,

∇η (z)∇u‖ (z) = −ρ (z)E‖, (1)

with spatially varying viscosity η (z) and charge density
ρ (z). Note that ρ (z) is the ionic charge density and
polarization charges do not enter the force balance, as
shown earlier [38]. The hydrodynamic boundary con-
dition of either slip or a high–viscosity layer is taken
into account via the viscosity profile η (z), which in con-
junction with the condition u‖ (0) = 0 is designed to
reproduce the flow profile at macroscopic distances from
the interfaces, as will be explained later. The electro–
osmotic mobility is found by integrating Eq. 1 twice
using u‖ (0) = 0 as a boundary condition,

u‖ (z)

E‖
= −

∫

z

0

D⊥ (z′)

η (z′)
dz′, (2)

with D⊥ (z) being the displacement field perpendicular
to the surface, which obeys ∇D⊥ (z) = ρ (z). Experi-
mentally, electro–osmotic velocity is measured far away
from the interface. Assuming that the permittivity is
spatially constant and equal to its bulk value εbulk, and
η (z) = ηbulk in Eq. 2, the electro–osmotic mobility is
given by the Helmholtz–Smoluchowski equation,

lim
z→∞

u‖ (z)

E‖
= −ε0εbulk

ηbulk
ζ, (3)

with ζ =
∫∞

0
(D⊥ (z) /ε0εbulk) dz being the electrostatic

potential at z = 0. A derivation of Eq. 3 is given in the
Appendix. Because the surface potential is typically not
measured directly, it is often more convenient to express
ζ in terms of the equivalent surface charge density. Using
the standard Poisson–Boltzmann relation between the
surface potential and the surface charge density, which is
valid on the mean–field level, the electro–osmotic mobil-
ity of Eq. 3 is expressed as an equivalent surface charge

density, referred to as the electrokinetic surface charge
density σek,

σek =

√

8c0ε0εbulk
β

sinh

[

βe ζ

2

]

, (4)

with c0 being the bulk salt concentration. Eq. 4 is known
as the Grahame equation. The ζ–potential is calculated
using Eq. 3, where the electro–osmotic mobility is either
measured experimentally or calculated from Eq. 2. A
derivation of Eq. 4 is given in the Appendix.
� Conductive surface charge density. The electric
conductivity close to charged surfaces is enhanced with
respect to the bulk due to the presence of excess ionic
charges. This surface conductivity can be conveniently
measured in small channels at low salt concentration,
in which case the contribution from the bulk vanishes
[16]. The surface conductivity is given by the sum of a
convective part, due to the electro–osmotic flow, and a
conductive part, due to the electrophoretic mobility of
the ions,

I

E‖
=

∫ ∞

0

e
[

c+ (z)− c− (z)
] [

u‖ (z)/E‖

]

dz

+

∫ ∞

0

e
[

ν+ (c+ (z)− c0) + ν− (c− (z)− c0)
]

dz,

(5)

with ν± being the electrophoretic mobility of the positive
and negative ions. Note that we subtract the bulk con-
tribution from the conductive part of Eq. 5. Similar to
the Grahame equation (Eq. 4), the surface conductivity
can be expressed as an equivalent surface charge density
using the Gouy–Chapman theory, giving

σc =
κ2ηbulk

4ec0 + νκ2ηbulk

√

I

E‖

√

I

E‖
+

32e2c20
κ3ηbulk

+
8ec0ν

κ
.

(6)
A derivation of Eq. 6 is given in the Appendix. Since KCl
and KNO3 are the predominant salt types considered in
the experiments that we compare our results with, we
assume ν+ = ν− = ν, which is a good approximation for
both KCl and KNO3.
� Viscosity and dielectric profile. We model the vari-
ations in viscosity at the interface by a step function,

η (z) =

{

ηi if z < zs
ηbulk otherwise,

(7)

with ηi being the viscosity in the interfacial layer of width
zs and ηbulk being the bulk viscosity. The value of zs is
estimated from the flow profile calculated in molecular
dynamics simulations of a shear flow between parallel
plates. Note that the definition of a viscosity at sub–
atomic length scales is problematic, and the profile of
Eq. 7 is only intended to reproduce, within a continuum
model, the flow characteristics found experimentally at
distances z > zs. For most hydrophobic surfaces the
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fluid slips along the wall [39], which is commonly taken
into account by the Navier hydrodynamic boundary con-
dition, b∇u‖ (z) |0 = u‖ (z) |0, with positive slip length b.
In simulations of water at a very hydrophobic diamond
surface, the viscosity is found to be constant and equal
to the bulk value ηbulk for z > 0.15 nm, and the slip
length has a value of b = 2.15 nm. Setting u‖ (0) = 0, we
reproduce the same flow profile for z > zs by assigning
ηi = ηbulk/15 and zs = 0.15 nm. For most hydrophilic
surfaces, on the other hand, the fluid in the first molec-
ular layer adjacent to the wall sticks to the surface [39].
Molecular dynamics simulations on smooth hydrophilic
surfaces have shown that the interfacial layer is not truly
stagnant, it merely has an enhanced viscosity [35, 40].
Following the simulation results of Ref. [35] we take
zs = 0.3 nm and ηi = 3ηbulk. In Fig. 2 (a), we show
the viscosity profile η (z) of Eq. 7 at hydrophilic and
very hydrophobic surfaces. For easy reference, we char-
acterize each viscosity profile by its apparent slip length,

b = zs (ηbulk/ηi − 1) . (8)

Whereas a positive slip length – as is commonly found
at hydrophobic surfaces – corresponds to a reduced in-
terfacial viscosity, an enhanced interfacial viscosity – as
is commonly found at hydrophilic surfaces – corresponds
to a negative apparent slip length.

In general, the electrophoretic mobility of ions ν± de-
pends on the ion concentration and the viscosity of the
fluid [41]. The ion mobility directly at the interface is
not known (note that the conclusion that the interfacial
mobility equals the bulk mobility [27] relies heavily on
the electrostatic model used). Here, we use the simplest
approach, where only the bulk–like viscous drag on the
ions is taken into account, resulting in a mobility that is
inversely proportional to the local viscosity.

In order to describe the dielectric profile at a similarly
simplistic level as the viscosity, we use a step function as
well,

ε⊥ (z) =

{

1 if z < zdds⊥

εbulk otherwise,
(9)

with zdds⊥ the dielectric dividing surface as defined as [34]

zdds⊥ = zv +

∫

zl

zv

ε−1
⊥ (zl)− ε−1

⊥ (z)

ε−1
⊥ (zl)− ε−1

⊥ (zv)
dz, (10)

where zv and zl are positions in the solid and liquid
phase, respectively. The profile in Eq. 9 is designed to
reproduce the electrostatic potential calculated in molec-
ular dynamics simulations at positions z & 1 nm from
the interface [34]. For zdds⊥ we use two different values:
zdds⊥ = 0.10 nm, corresponding to a hydrophilic surface,
and zdds⊥ = 0.12 nm, corresponding to a very hydrophobic
surface, as directly taken from Ref. [34]. The inverse di-
electric profiles ε−1

⊥ (z) in the approximation of Eq. 9 are
shown in Fig. 2 (b) for hydrophilic and very hydrophobic
surfaces.

A simplified model where zs and z
dds

⊥ are chosen equal
will give qualitatively similar results. In the calculations
below, however, we take the parameters zs and zdds⊥ di-
rectly from molecular dynamics simulations. Doing so
works very well for the dielectric dividing surface zdds⊥ ,
as we will show on the basis of our results for the double–
layer capacitance.

3 Scaling Analysis

In the following, we qualitatively investigate how the di-
electric profile ε⊥ (z) as given in Eq. 9 affects the coun-
terion distribution, and consequently σek and σc.
� Counterions at a charged plate. The electrokinetic
and conductive surface charge densities defined in Eqs. 4
and 6 are directly affected by the viscosity profile η (z).
The dielectric profile ε⊥ (z) does not affect σek and σc
directly, but it does have a decisive influence on the ion
distribution, which in turn has a major impact on σek
and σc. For a qualitative picture of the effect of ε⊥ (z),
we consider the situation of an infinite charged plate in
contact with a solution containing only counterions. We
keep the viscosity constant, η (z) = ηbulk. According to
the Gouy–Chapman model, the ions form a diffuse layer
when ε⊥ (z) = εbulk, and by definition σek = σc = σ0.
This relation is also valid in the limit of low salt con-
centration (c0 → 0), in which case the solution contains
only counterions. Using the profile of Eq. 9, on the other
hand, a large portion of the ions will condense into the
low–dielectric area because of the steep increase of the
electric potential resulting from the low dielectric con-
stant. This model of a low–dielectric layer of condensed
ions has been proposed long ago by Otto Stern based on
experimental double layer capacitance data [42], and we
have confirmed recently that Eq. 9 in conjunction with a
mean–field model indeed reproduces the salt concentra-
tion dependence of the double layer capacitance [34]. In
our present scaling analysis, we use a delta function as a
model for the charge distribution to mimic the condensed
layer of ions,

ρ (z) = −σ0δ (z − d) , (11)

with d the typical distance from the surface, which is
treated in this scaling analysis as a parameter. The
electro–osmotic mobility of Eq. 2 is integrated by parts,
which leads to

ζ = − 1

ε0εbulk

∫ ∞

0

z ρ (z) dz, (12)

using the definition of ζ given in Eq. 3. Inserting Eq. 11
into Eq. 12 gives

ζ =
σ0 d

ε0εbulk
(13)

which scales linearly with σ0 for a given distance d. The
behavior of σek, defined by Eq. 4 and using Eq. 13, as
a function of σ0 depends on how d behaves as a function
of σ0.



Langmuir 28, 16049–16059 (2012) 5

0 0.5 1.0
z (nm)

0

1

ε
-1

a b c

0

1

2

3

a

0 0.5 1.0
z (nm)

µ

0

1

2

3

η
/η
b
u
lk

0 0.5 1.0
z (nm)

1/εbulk

Figure 2: (a) Normalized viscosity profile (Eq. 7) at typi-
cal hydrophilic and hydrophobic surfaces (blue solid line and
red dashed line respectively) and (b) Corresponding inverse
dielectric profiles ε−1

⊥ (z) (Eq. 9), showing a very small dif-
ference of 0.02 nm between the dielectric dividing surface po-
sitions at hydrophobic and hydrophilic surfaces. (c) Nonelec-
trostatic potential µ± (z) (Eq. 22) with α = 1. Also shown
is an ion with diameter a.

To calculate the conductivity we insert Eq. 11 into
Eq. 5,

I

E‖
=

∫ ∞

0

(

−σ0
u‖ (z)

E‖
+ ν|σ0|

)

δ (z − d) dz, (14)

with ν being the electrophoretic mobility of the coun-
terions. The flow at z = d turns out to be u‖ (d) =
−E‖σ0d/2ηbulk, from which the conductivity follows as

I

E‖
=

σ2
0 d

2ηbulk
+ ν|σ0|. (15)

Contrary to the electro–osmotic mobility, which depends
linearly on σ0, the conductivity scales with σ2

0 . That
means that the conductive surface charge density σc will
exceed the electrokinetic surface charge density σek for
large σ0 (provided d does not become infinitesimally
small), which rationalizes the experimentally measured
excess surface conductivity that is sketched in Fig. 1 (c).
The analysis above shows that the so–called anomalous
surface conduction follows naturally from the standard
dynamic equations when the double–layer width deviates
from the standard mean–field prediction for a uniform
dielectric constant.

4 The Modified Poisson–Boltzmann
Equation

To quantitatively examine the electrokinetic and conduc-
tive surface charge densities σek and σc as a function of
the bare surface charge density σ0, we solve the Poisson–
Boltzmann equation in conjunction with the Stokes equa-
tion (Eq. 1) using the dielectric profile of Eq. 9 and the
viscosity profile of Eq. 7.

We assume that the electric field is linearly related
to the displacement field by the local inverse dielectric
tensor ε−1

⊥ (z),

ε0E⊥ (z) = ε−1
⊥ (z)D⊥ (z) , (16)

where ⊥ indicates the component perpendicular to the
interface. Eq. 16 is a good approximation in case of a
slowly varying D⊥ (z) [34, 43]. Taking the derivative of
Eq. 16 and using ∇ψ (z) = −E⊥ (z), with ψ (z) the elec-
trostatic potential, and ∇D⊥ (z) = ρ (z), with ρ (z) the
ionic charge density, we arrive at the modified Poisson
equation

ε0∇2ψ (z) = ε−1
⊥ (z) ρ (z)−D⊥ (z)∇ε−1

⊥ (z) . (17)

The displacement field D⊥ (z) is given by

D⊥ (z) =

∫

z

0

ρ (z′) dz′. (18)

Eqs. 17 and 18 constitute an integro–differential equa-
tion [44]. We consider a solution of monovalent ions. The
free charge density is calculated from the ionic densities
c+ (z) and c− (z),

ρ (z) = e (c+ (z)− c− (z)) , (19)

with e the absolute charge of an electron. To ensure that
the ionic density does not exceed its physical limit set by
the ionic volume, we include a fermionic steric interaction
to calculate the ionic densities from the unrestricted ionic
densities c̃+ (z) and c̃− (z) [32, 45, 46, 47, 48],

c± (z) =

√
2 c̃± (z)√

2 + a3+ (c̃+ (z)− c0) + a3− (c̃− (z)− c0)
,

(20)
with c0 being the bulk salt concentration and a+ and a−
being the diameters of positive and negative ions respec-
tively. The denominator in Eq. 20 restricts the maxi-
mum density c± (z) to

√
2 a−3

± , which is the maximum
density of close–packed (face–centered cubic or hexag-
onal close–packed) spheres of diameter a±. The unre-
stricted ionic densities c̃+ (z) and c̃− (z) follow the Boltz-
mann distribution

c̃± (z) = c0 exp [−µ± (z)∓ βeψ (z)], (21)

with β the inverse thermal energy and µ+ (z) and µ− (z)
the nonelectrostatic contribution to the potential of the
positive and negative ions respectively. Combining Eqs.
17, 18, 19, 20 and 21 yields the modified Poisson–
Boltzmann equation. It should be noted that the steric
interaction of Eq. 20 becomes important only in case of
high surface charge density, high salt concentration or
large ion size [31]; its effect on the calculations presented
here is minor.
� Nonelectrostatic potential. For the nonelectro-
static potential µ± (z), we use a heuristic function of the
form

µ± (z) = α exp [1− 2z/a±] . (22)

Beyond 1 nm away from the interface, the ionic potential
of mean force – which includes dielectric as well as non-
electrostatic effects – typically shows a decreasing shape
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that can be well approximated with the exponential form
of Eq. 22 [49, 50]. Note, however, that different func-
tional forms, such as a square–well potential, could be
used equally well. The dependence of the nonelectro-
static potential on the surface and ion type is parameter-
ized by the ion diameter a± and the interaction strength
α. In Fig. 2 (c), we show the nonelectrostatic potential
of Eq. 22 with α = 1, together with a sketch of an ion
with diameter a. In the following, we first set α = 0 to
show the trends of σek and σc and then use α as a fit
parameter to compare with experimental data.
� Volume fraction. Because it better reflects the dis-
tribution of the ions than the density of point charges,
we plot the fraction ϕ± (z) of the volume occupied by
ions, calculated by convolution of the point charge den-
sity with the molecular volume v± (z),

ϕ± (z) =

∫

c± (z′) v± (z − z′) dz′, (23)

with v± (z) dz the volume of an ion slice of width dz,

v± (z) =

{

π
(

a2±/4− z2
)

if |z| < a±/2

0 otherwise.
(24)

The volume fraction is used only for plotting the ion
distribution; for all calculations we still assume that the
charge is located at a single point in the center of the
ion.

α = 0 α = 1
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εbulk
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Figure 3: Double–layer capacitance C = dσ0/dψ0, calculated
from Eqs. 17–21 for two different approximations of the di-
electric profile: ε⊥ (z) = εbulk (black lines) and ε⊥ (z) from
Eq. 9, using zdds⊥ = 0.10 nm (hydrophilic, blue lines) and
zdds⊥ = 0.12 nm (hydrophobic, red lines). Eq. 22 is used
for the nonelectrostatic potential, with interaction strengths
α = 0 (solid lines) and α = 1 (dashed lines). For the fermionic
steric interaction we use a± = 0.3 nm. Black circles represent
experimental data on carbon-based surfaces in contact with
aqueous electrolytes [34].

Table 1: Combinations of the width zs and viscosity ηi of the
interfacial layer used for the viscosity profile of Eq. 7.

No Surface type zs (nm)
ηbulk

ηi

b (nm)a

1 Hydrophilic 0.3 1/3 −0.2

2 No slip – 1 0.0

3 Moderately hydrophobic 0.15 5 0.6

4 Very hydrophobic 0.15 15 2.1

aThe apparent slip length b according to Eq. 8.

5 Results and Discussion

We numerically solve the modified Poisson–Boltzmann
equation (Eqs. 17–21) using a fixed bare surface charge
density σ0 located at z = 0 and vanishing electrostatic
potential at infinity as boundary conditions. The ion
centers are allowed to approach z = 0, thereby partly
penetrating the solid, which accounts for surface softness.
For the fermionic steric repulsion of Eq. 20 we use a± =
0.3 nm.

� Double–layer capacitance. In Fig. 3, we show the
double–layer capacitance C = dσ0/dψ0, with ψ0 being
the potential at z = 0, as a function of the bulk salt
concentration c0, together with experimental results on
different kinds of carbon–based surfaces [34]. Assuming
ε⊥ (z) = εbulk (black lines), the result of the Poisson–
Boltzmann equation overestimates the experimental data
by an order of magnitude. The experimental data is cap-
tured much better when the dielectric profile of Eq. 9 is
used (red and blue lines). Quantitative agreement can
be achieved when the repulsive nonelectrostatic poten-
tial µ± (z) of Eq. 22 is taken into account in addition
to the dielectric profile (red & blue dashed lines). The
interaction strength needed to fit the data is of the or-
der of unity; for the results in Fig. 3 we have used
α = 1. It has been known for nearly a century that the
discrepancy between experimental capacitance data and
the Gouy–Chapman model can be resolved by assuming
a low–dielectric layer at the interface [42]. Fig. 3 shows
that the modified Poisson–Boltzmann equation with the
dielectric profile of Eq. 9, which indeed enhances the ad-
sorption of ions into the low–dielectric region [36], pro-
vides an accurate description of the ion distribution, as
well as the dielectric properties of the interfacial layer.

In Fig. 4 we show the volume fraction profile of coun-
terions ϕ+ (z), at bulk salt concentration c0 = 1 mM,
for two different approximations of the dielectric func-
tion: (a) ε⊥ (z) = εbulk and (b) using ε⊥ (z) from Eq.
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Figure 4: Volume fraction of ions, calculated from a convo-
lution according to Eq. 23 of the ion density c+ (z) with the
molecular volume of Eq. 24, using (a) a bulk dielectric con-
stant and (b) a dielectric dividing surface at zdds⊥ = 0.1 nm,
as appropriate for a hydrophilic surface. The correspond-
ing electro–osmotic mobility is shown (c) for ε⊥ (z) = εbulk
and (d) for ε⊥ (z) from Eq. 9, using four different viscosity
profiles (Eq. 7 with the parameters listed in Tab. 1), with
apparent slip length b calculated using Eq. 8: ηbulk/ηi = 15
and zs = 0.15 nm (b = 2.1 nm, dashed lines), ηbulk/ηi = 5
and zs = 0.15 nm (b = 0.6 nm, dash–dotted lines), no
slip (solid lines) and ηbulk/ηi = 1/3 with zs = 0.3 nm
(b = −0.2 nm, dotted lines). The bare surface charge den-
sity equals σ0 = −0.6 e/nm2 and the bulk salt concentration
is c0 = 1 mM. For the steric interactions defined in Eq. 20
we use a+ = a− = 0.3 nm and no nonelectrostatic ion–wall
interaction: µ± (z) = 0.

9 with the hydrophilic zdds⊥ = 0.1 nm. The nonelectro-
static interaction is set to zero, µ± (z) = 0. The bare
surface charge density is σ0 = −0.6 e/nm2, which is the
value measured for silica at 10−3 M KCl and pH = 8
[1]. Clearly, the counterions accumulate much closer to
the wall when the dielectric profile is taken into account,
which is due to the steep increase of the potential in
the low–dielectric region. It should be noted that, al-
though the density of ions directly at the wall is en-
hanced, it never exceeds its physical limit because of the
fermionic steric repulsion introduced in Eq. 20. The
electro–osmotic mobility u‖ (z) /E‖ in the first nanome-
ter next to the surface, calculated from Eq. 2, is shown
in Figs. 4 (c)–(d) using the viscosity profile from Eq.
7 with four different combinations of ηi and zs, which
are listed in Tab. 1. Each combination can be char-
acterized by its apparent slip length using Eq. 8: very
hydrophobic (ηbulk/ηi = 15 and zs = 0.15 nm, giving
b = 2.1 nm), moderately hydrophobic (ηbulk/ηi = 5 and
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Figure 5: Electrokinetic surface charge density σek (a, b) and
conductive surface charge density σc (c, d) as a function of
the bare surface charge density σ0, using a bulk dielectric
constant ε⊥ (z) = εbulk on the left (a, c) and using ε⊥ (z) from
Eq. 9 on the right (b, d), with zdds⊥ = 0.1 nm (hydrophilic)
when b ≤ 0 and zdds⊥ = 0.12 nm (hydrophobic) when b >
0. The parameters of the viscosity profiles used are listed
in Tab. 1: No 1. hydrophilic, dotted lines (zs = 0.3 nm,
ηbulk/ηi = 1/3, b = −0.2 nm); No 2. no slip, solid lines
(ηi = ηbulk, b = 0); No 3. moderately hydrophobic, dashed–
dotted lines (zs = 0.15 nm, ηbulk/ηi = 5, b = 0.6 nm); No 4.
very hydrophobic, dashed lines (zs = 0.15 nm, ηbulk/ηi = 15,
b = 2.1 nm). For all curves, the bulk salt concentration is
c0 = 1 mM. No nonelectrostatic interaction potential is used,
µ± (z) = 0, and steric interaction with a± = 0.3 nm.

zs = 0.15 nm, giving b = 0.6 nm), no slip (ηi = ηbulk,
b = 0) and hydrophilic (ηbulk/ηi = 1/3 and zs = 0.3 nm,
giving b = −0.2 nm). Figs. 4 (c) and (d) already show a
strikingly different behavior: the mobility is significantly
lower in Fig. 4 (d), where a dielectric dividing surface
zdds⊥ is taken into account via Eq. 9, compared to Fig. 4
(c), where εbulk is used.

� First puzzle: Saturation of σek. In Fig. 5, we
plot (a) the electrokinetic surface charge density σek, de-
fined in Eq. 4, and (c) the conductive surface charge
density σc, defined in Eq. 6 as a function of the bare
surface charge density σ0, using a bulk dielectric con-
stant (ε⊥ (z) = εbulk) and four different viscosity profiles
(Eq. 7 with the parameters listed in Tab. 1). Using
the very hydrophobic viscosity profile (No 4. in Tab. 1,
b = 2.1 nm) or the moderately hydrophobic profile (No 3.
in Tab. 1, b = 0.6 nm), the electrokinetic surface charge
density σek exceeds the bare surface charge density σ0,
contrary to experimental evidence [18]. The correct be-
havior, σek < σ0, is only recovered when using a viscous
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Figure 6: Conductive surface charge density σc versus elec-
trokinetic surface charge density σek, (a) using ε⊥ (z) = εbulk
and (b) using Eq. 9 with zdds⊥ = 0.1 nm (hydrophilic) when
b ≤ 0 and zdds⊥ = 0.12 nm (hydrophobic) when b > 0. Eq. 7
is used for the viscosity profile, with the parameters listed
in Tab. 1. For all curves, the bulk salt concentration is
c0 = 1 mM. No nonelectrostatic interaction potential is used,
µ± (z) = 0, while steric interaction (Eq. 20) is included with
a± = 0.3 nm.

layer (No 1. in Tab. 1, b = −0.2 nm). At the same time,
however, σc is also lowered, at roughly the same rate as
σek, see Fig. 5 (c). When a dielectric dividing surface is
introduced, shown in Figs. 5 (b) & (d), the electrokinetic
surface charge density saturates as a function of the bare
surface charge density for all viscosity profiles. Because
experiments show that saturation of σek occurs at every
surface type, we conclude that a dielectric profile of the
form of Eq. 9 is necessary to explain the trend of the ex-
perimental mobility data that is sketched in Fig. 1 (b).
The main effect of the hydrodynamic boundary condition
is that σek saturates at higher values at hydrophobic sur-
faces then at hydrophilic ones, again in agreement with
experimental data [51]. Interestingly, the electrokinetic
surface charge density of the very hydrophobic surface
rises above σ0 for low values of σ0, to which we will come
back below.

� Second puzzle: Anomalous surface conductivity.
We plot the conductive surface charge density σc as a
function of the electrokinetic surface charge density σek
in Fig. 6, using (a) ε⊥ (z) = εbulk and (b) the dielectric
profile of Eq. 9. Without dielectric profile, σc is close
to, or below σek, whereas σc features a steep increase
when the dielectric profile is used, in agreement with the
experimental trends sketched in Fig. 1 (c). Thus the
excess conductivity, which is traditionally referred to as
anomalous surface conductance [52, 26, 24, 25], follows
directly from the dielectric profile ε⊥ (z).

� Third puzzle: Salt–concentration dependence of
σek. In Fig. 7 (a), we plot the electrokinetic sur-
face charge density σek as a function of the bare sur-
face charge density σ0 at different values of the bulk
salt concentration c0. Curves are shown for a very hy-
drophobic surface (No 4. in Tab. 1: b = 2.1 nm and
zdds⊥ = 0.12 nm) and for a typical hydrophilic surface
(No 1. in Tab. 1: b = −0.2 nm and zdds⊥ = 0.10 nm).
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Figure 7: (a) Effect of the bulk salt concentration c0 on the
electrokinetic surface charge density σek as a function of the
bare surface charge density σ0 for hydrophilic surfaces (blue
lines), calculated using zs = 0.3 and ηbulk/ηi = 1/3 (No 1.
in Tab. 1) in combination with zdds⊥ = 0.10 nm, and for hy-
drophobic surfaces (red lines), calculated using zs = 0.15 nm
and ηbulk/ηi = 15 (No 4. in Tab. 1) in combination with
zdds⊥ = 0.12 nm. For all curves a± = 0.3 nm and µ± (z) = 0.
(b) Dependence of σek on the strength α of the nonelectro-
static potential µ± (z) given in Eq. 22. For illustration
purposes, we use the hydrophilic dielectric dividing surface
zdds⊥ = 0.10 nm and bulk viscosity ηi = ηbulk. The bulk salt
concentration c0 = 1 mM.

Clearly, the electrokinetic surface charge density is higher
at hydrophobic surfaces than at hydrophilic surfaces at
all salt concentrations, in accordance with experimen-
tal results [51, 18]. The difference between the surface
types is primarily caused by the different viscosity pro-
files; zdds⊥ is comparable for both surface types. Similar
to the experimental trend sketched in Fig. 1 (d) [18], the
behavior as a function of salt concentration is opposite
at the two surface types: Whereas σek increases with in-
creasing salt concentration at the hydrophobic surface,
it decreases with increasing salt concentration at the hy-
drophilic surface. The reason for this opposite behav-
ior is that for moderate and high bulk salt concentra-
tion, c0 > 10−3 M, the charge distribution shifts towards
the wall upon increasing c0 (decreasing Debye screening
length), and more charge is located in the region of vary-
ing viscosity. At hydrophilic surfaces, the effect of the
higher viscosity in the interfacial layer is to decrease the
electrokinetic surface charge density σek, whereas at hy-
drophobic surfaces the low viscosity increases σek. At low
salt concentrations, c0 ≤ 10−3 M, the effect diminishes
because the charge within the interfacial layer goes to
zero, and therefore becomes irrelevant.

Apart from the dependence on surface type discussed
above, the electrokinetic surface charge density also de-
pends on the specific ion–surface interaction, which has
a significant nonelectrostatic component. In our calcula-
tions, this contribution is modeled by the function µ± (z)
given in Eq. 22, which has only one parameter, the in-
teraction strength α (keeping the decay length fixed and
equal to the ion diameter a±). In Fig. 7 (b), we plot
σek as a function of σ0 for different values of the non-
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presented in Ref. [18]. In order to cancel the surface conduc-
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(
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ek ) /1.55
)

, with
σcorr.

ek the values reported in Ref. [18]. For the hydrophilic
curves, zdds⊥ = 0.10 nm, zs = 0.3 nm and ηi = 3ηbulk, giv-
ing b = −0.2 nm (viscosity profile No 1 in Tab. 1). For
the hydrophobic curves, zdds⊥ = 0.12 nm, zs = 0.15 nm and
ηi = ηbulk/15, giving b = 2.1 nm (viscosity profile No 4 in
Tab. 1).

electrostatic interaction strength α for fixed c0 = 1 mM.
Positive values of α repel ions from the surface, thereby
increasing σek, whereas negative values attract ions to the
surface, decreasing σek. Interestingly, varying α within a
moderate range of only several times the thermal energy
has an equally large effect on σek as the surface–type de-
pendence shown in Fig. 7 (a). To determine realistic
values of α, the surface adsorption excess could be com-
pared with molecular dynamics simulations. Simulations
of uncharged polar and nonpolar self–assembled mono-
layers show that ions are attracted to polar surfaces, but
repelled from nonpolar ones [50]. From these results we
expect that α is negative for hydrophilic surfaces and
positive for hydrophobic surfaces. Note that the ion–
surface potential may be much more complex than the
simple form assumed in Eq. 22, but for the present pur-
pose a generic exponential potential is sufficient.

6 Fitting Experimental Data

In the previous sections we have shown that the dielec-
tric profile of Eq. 9 induces condensation of ions into a
thin layer, and that the resulting electrokinetic and con-
ductive surface charge densities qualitatively reproduce
the experimental trends sketched in Fig. 1. In the fol-
lowing, we fit the model to published experimental data
using the interaction strength α of the nonelectrostatic
potential µ± (z), given in Eq. 22, as a free parameter.

In Fig. 8, we show measurements of the electrokinetic
surface charge density σek taken from Ref. [18] as sym-
bols, together with the fitted results of our model. At
the hydrophilic surfaces, in Fig. 8 (a), the model cap-
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Figure 9: Conductive surface charge density σc versus elec-
trokinetic surface charge density σek for different systems in
contact with a KCl solution of bulk concentration c0. (a)
Data from rectangular silica channels (dark blue, Ref. [21])
and monodisperse porous silica particles (red, Ref. [53]). (b)
Data from monodisperse spherical polystyrene particles (dark
blue, Ref. [26] and red, Ref. [54]). Curves are shown for in-
teraction parameters α = 0 and α = −1 (hydrophilic) and
α = 0 and α = 1 (hydrophobic), using a bulk concentration
of 1 mM.

tures the data very well over the entire range of the bare
surface charge density σ0. Note that the data presented
in Ref. [18] have been corrected using a different model
for the anomalous surface conduction, and that the raw
data reproduced here have been reconstructed. At the
hydrophobic surface, in Fig. 8 (b) the electrokinetic
surface charge density exceeds the bare surface charge
density for |σ0| < 0.15 e/nm2, which is reproduced by
the model. Originally, this apparent excess electrokinetic
mobility was considered to be a measurement error [18].
From our calculations we conclude, however, that it is
possibly caused by hydrodynamic slip at the hydrophobic
solid surface. At high absolute values of the bare surface
charge density σ0, the model disagrees with the experi-
mental data at the hydrophobic surface, which probably
has to do with the simplified model used. The fit param-
eter α is negative at the hydrophilic surfaces, indicating
that ions are attracted to polar surfaces, and slightly pos-
itive at the hydrophobic surface, indicating that ions are
repelled from nonpolar surfaces, in line with results from
molecular dynamics simulations [50]. Again, the oppo-
site trend of σek as a function of bulk salt concentration
at the two surface types in Fig. 8 is captured very well
within our model.

As symbols in Fig. 9, we reproduce experimental data
of the conductive surface charge density σc as a func-
tion of the electrokinetic surface charge density σek at
(a) hydrophilic surfaces and (b) hydrophobic surfaces in
contact with a KCl solution at several low salt concentra-
tions c0. The data on silica particles [53] and polystyrene
particles [26, 54] have been taken from literature directly.
The data on rectangular silica channels [21] have been
fitted numerically with the Gouy–Chapman model for a
slit–like geometry to extract σek and σc from the stream-
ing potential and the electrical conductance, respectively.
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The spread in the data is likely to be caused by the dif-
ferent materials and geometries used in the experiments.
In Fig. 9 (a), we show results from our model for the hy-
drophilic viscosity profile (No 1. in Tab. 1: b = −0.2 nm)
using α = 0 (solid line) and α = −1 (broken line) for
illustration. The salt concentration for the calculated
curves is c0 = 1 mM, because at low salt concentration
the dependence of σek and σc on c0 is minor. The model
captures the data very well, using an attractive nonelec-
trostatic potential with an interaction strength between
α = 0 and α ≃ −1. For the curves in Fig. 9 (b), we use
the viscosity profile No 4. in Tab. 1 (b = 2.1 nm), as ap-
propriate for very hydrophobic surfaces. We use α = 0
(solid line) and α = 1 (dotted line), showing that the
hydrophobic surface can be modeled with a nonelectro-
static interaction around α = 0, or a slightly repulsive
potential of the order of α = 1. The slight nonelectro-
static attraction at the hydrophilic surface and repulsion
at the hydrophobic surface corresponds well to the fit pa-
rameters used to model σek in Fig. 8, as well as to the
trend expected from simulations of uncharged polar and
nonpolar surfaces [50]. However, fitting the capacitance
data shown in Fig. 3, which is taken in a different con-
centration regime, requires a repulsive nonelectrostatic
potential for all data. The only difference in the model
is the use of the viscosity profile for the comparison in
Figs. 8 and 9, which is not needed to calculate the capac-
itance in Fig. 3. Therefore, the discrepancy is likely to be
related fact that we use the viscosity profiles from molec-
ular dynamics simulations at atomically smooth surfaces.
A more accurate viscosity profile, or including the effect
of surface roughness, may reconciliate the different re-
sults.

7 Conclusions

Using a dielectric profile with a low–dielectric layer at the
interface, as extracted from molecular dynamics simula-
tions, in a modified Poisson–Boltzmann equation we are
able to explain three well–established experimental puz-
zles that have not been understood within the context
of a single model before. First, we capture the satura-
tion of the electro–osmotic surface charge density σek as
a function of the bare surface charge density. Second,
we explain the excess surface conductivity commonly
measured in electrokinetic experiments, making the as-
sumption of anomalous electrical conductance behind the
shear plane superfluous. Third, we reproduce the oppo-
site trend of the electro–osmotic mobility as a function
of salt concentration at hydrophilic and hydrophobic sur-
faces. The physical mechanism leading to the observed
behavior is the enhanced condensation of ions close to
the surface, which is due to the low effective dielectric
constant of interfacial water. This causes saturation of
the electrokinetic surface charge density, but not of the
conductive surface charge density, explaining the notion

of anomalous excess surface conductivity.
We have left out a number of important effects from

our modeling, for example, charge regulation at the sur-
face as a function of varying salt concentration, surface
roughness and curvature, electrofriction effects [55], as
well as electrostatic correlation effects beyond the mean–
field level [56]. We have also modeled the viscosity and
dielectric profiles by simple square–well functions and the
nonelectrostatic surface–ion interaction by an exponen-
tially decaying function. At the current stage, our model
seems to contain sufficient complexity to explain a num-
ber of at–first–sight disconnected and hitherto puzzling
experimental findings and trends. Needless to say, how-
ever, it only constitutes a first step in efforts to describe
the electrostatics and electrokinetics of charged surfaces
in a unified framework.
� Acknowlegments. We thank the Deutsche
Forschungsgemeinschaft for funding via Nanosystems
Initiative Munich.

Appendix

We derive the electro–osmotic mobility, the electrokinetic
surface charge density and the conductive surface charge
density from the Gouy–Chapman model.
� Gouy–Chapman model. The standard Poisson
equation is given by

ε0εbulk∇2ψ (z) = −ρ (z) . (25)

According to the standard Boltzmann equation, the
charge density ρ (z) equals

ρ (z) = −2ec0 sinh [βeψ (z)] . (26)

The solution to the Poisson–Boltzmann equation (Eqs.
25–26) for a monovalent electrolyte at a charged plane is

ψ (z) = − 2

βe
ln

1 + γ exp [−κz]
1− γ exp [−κz] , (27)

with
γ = −κλ+

√

κ2λ2 + 1. (28)

The inverse Debye screening length κ and the Gouy–
Chapman length λ are given by

κ =

√

2e2c0β

ε0εbulk
and λ =

2ε0εbulk
βe|σ| . (29)

The electro–osmotic mobility is related to the charge den-
sity by the Stokes equation, which reads

ηbulk∇2u‖ (z) = −ρ (z)E‖, (30)

for spatially constant viscosity ηbulk.
� Electro–osmotic mobility. Eliminating the charge
density ρ (z) from Eqs. 25 and 30 yields

ε0εbulk∇2ψ (z) =
ηbulk
E‖

∇2u‖ (z) . (31)
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Integrating twice with boundary conditions ∇ψ (z) =
∇u‖ (z) = 0 for z → ∞ and the no–slip boundary condi-
tion u‖ (0) = 0 gives the electro–osmotic mobility,

u‖ (z)

E‖
=
ε0εbulk
ηbulk

[ψ (z)− ψ (0)] . (32)

Defining ψ (0) = ζ and using ψ (z → ∞) = 0 leads to the
Helmholtz–Smoluchowski equation as shown in Eq. 3.
� Electrokinetic surface charge density. To solve the
Poisson–Boltzmann equation (given by Eqs. 25 and 26)
for a fixed surface charge density σ, we multiply both
sides of Eqs. 25 and 26 by 2∇ψ (z), giving

ε0εbulk∇ [∇ψ (z)]
2
= 4ec0 sinh [βeψ (z)]∇ψ (z) . (33)

Integrating both sides, we arrive at

ε0εbulk [∇ψ (z)]
2
=

4c0
β

(cosh [βeψ (z)]− 1) , (34)

where we used cosh [βeψ (z)] = 1 for ψ (z) = 0. Rewrit-
ing with the help of

√
coshx− 1 =

√
2 sinh [x/2], we ar-

rive at

∇ψ (z) = −
√

8c0
βε0εbulk

sinh

[

βeψ (z)

2

]

, (35)

where the minus sign applies because ∇ψ (z) must be
negative for positive values of ψ (z). From the electroneu-
trality condition and ∇ψ (z) = 0 for z → ∞ we find that
the surface charge density equals

σ = −
∫ ∞

0

ρ (z) dz = −ε0εbulk∇ψ (0) . (36)

Combining Eq. 35 with Eq. 36 gives the Grahame equa-
tion

σ =

√

8c0ε0εbulk
β

sinh

[

βeψ (0)

2

]

. (37)

Eq. 37 defines the electrokinetic surface charge density
σek when for ψ (0) the ζ–potential of Eq. 3 is used.
� Conductive surface charge density. The surface
conductivity is given by Eq. 5. Similar to the Grahame
equation, the surface conductivity can be expressed as
an equivalent surface charge density using the Gouy–
Chapman theory. For convenience, we split Eq. 5 in
three parts: the convective part (first line),

I(1)

E‖
=

∫ ∞

0

e
[

c+ (z)− c− (z)
] [

u‖ (z)/E‖

]

dz, (38)

and two conductive parts (second line),

I(2)

E‖
=

∫ ∞

0

eν+ (c+ (z)− c0) dz

I(3)

E‖
=

∫ ∞

0

eν− (c− (z)− c0) dz.

(39)

Inserting the electro–osmotic mobility of Eq. 32 and the
charge density of Eq. 25 in Eq. 38 gives

I(1)

E‖
= −ε

2
0ε

2
bulk

ηbulk

∫ ∞

0

∇2ψ (z) [ψ (z)− ψ (0)] dz, (40)

which can be integrated by parts to give

I(1)

E‖
=
ε20ε

2
bulk

ηbulk

∫ ∞

0

[∇ψ (z)]
2
dz, (41)

using ∇ψ (z) = 0 for z → ∞. Inserting the derivative of
Eq. 27 in Eq. 41 yields

I(1)

E‖
=
ε20ε

2
bulk

ηbulk

∫ ∞

0

[

4κγ exp [−κz]
βe (1− γ2 exp [−2κz])

]2

dz

=
ε20ε

2
bulk

ηbulk

[

− 8κγ2 exp [−2κz]

β2e2 (1− γ2 exp [−2κz])

]∞

0

=
ε20ε

2
bulk

ηbulk

8κγ2

β2e2 (1− γ2)
.

(42)

The second part of the conductivity equals

I(2)

E‖
=

∫ ∞

0

eν+c0

[

(

1 + γ exp [−κz]
1− γ exp [−κz]

)2

− 1

]

dz

=

∫ ∞

0

eν+c0

[

4γ exp [−κz]
(1− γ exp [−κz])2

]

dz

= eν+c0

[

− 4γ exp [−κz]
κ (1− γ exp [−κz])

]∞

0

= eν+c0
4γ

κ (1− γ)
.

(43)

Similarly,

I(3)

E‖
= −eν−c0

4γ

κ (1 + γ)
. (44)

Summing up I =
∑

i
I(i) and rewriting in terms of κ

gives the total excess conductivity

I

E‖
=

32γ2e2c20
κ3 (1− γ2) ηbulk

+
4γec0ν+
κ (1 + γ)

− 4γec0ν−
κ (1− γ)

. (45)

For simplicity, we assume ν+ = ν− = ν, so Eq. 45 be-
comes

I

E‖
=

γ2

1− γ2

[

32e2c20
κ3ηbulk

+
8ec0ν

κ

]

, (46)

which is inverted to give the following surface charge den-
sity, using Eqs. 28 and 29

σ =
κ2ηbulk

4ec0 + νκ2ηbulk

√

I

E‖

√

I

E‖
+

32e2c20
κ3ηbulk

+
8ec0ν

κ
.

(47)
Eq. 47 defines the conductive surface charge density σc
when the conductivity is calculated using Eq. 5.
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