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� Abstract. For ion channel gating, the appearance of two distinct conformational states and the discrete
transitions between them is essential, and therefore of crucial importance to all living organisms. We show that
the physical interplay between two structural elements that are commonly present in bacterial mechanosensitive
channels – namely a charged vestibule and a hydrophobic constriction – creates two distinct conformational states,
open and closed, as well as the gating between them. We solve the nonequilibrium Stokes-Poisson-Nernst-Planck
equations, extended to include a molecular potential of mean force, and show that a first order transition between
the closed and open states arises naturally from the diffusio-osmotic stress caused by the ions and water inside the
channel and the elastic restoring force from the membrane.

� Introduction. Osmotic shock presents a fatal risk to
unicellular organisms. A sudden increase of the environ-
mental solute concentration, known as hypertonic shock,
leads to water loss and cell volume decline, whereas a
sudden decrease, referred to as hypotonic shock, causes
water to enter the cell rapidly, inducing cytolysis. As
a final resort in case of severe hypotonic shock, many
bacteria, archaea and fungi avert cell lysis by activat-
ing non-selective membrane channels to release solutes
from the cytoplasm [1]. In E. coli bacteria, two well-
studied membrane protein channels are responsible for
the release of solutes: the mechanosensitive channel of
large conductance (mscl) [2] and the mechanosensitive
channel of small conductance (mscs) [3]. Based on the
observation that mechanosensitive channels are activated
in vitro by an applied hydrostatic pressure, the prevalent
model for the gating mechanism invokes a conformational
change in the protein triggered by tension applied to the
cell membrane [2, 3, 4]. A free energy landscape for chan-
nel activation can be constructed by considering an elas-
tic force proportional to the applied pressure, assuming
predetermined open and closed states [5]. In E. coli mscl
mutants, however, added charge in the pore region acti-
vates the channels also in the absence of a hydrostatic
pressure difference [6, 7, 8, 9], highlighting the impor-
tance of electrostatic interactions in the activation pro-
cess. Indeed, the transmembrane domains of both mscl
and mscs carry a substantial net charge: Each of the
ten transmembrane helices of the pentameric mscl pro-
tein carries a net charge of −1e [10], and the heptameric
mscs protein carries an arginine residue with a charge
of +1e on each of its monomers [11]. Charge-induced
activation is a robust feature of mscl channels and has
been used for drug delivery into mammalian cells [12].
Despite its significance, however, the electrostatic con-
tribution to the activation energy, and in particular the
diffusio-osmotic force originating in the dynamic overlap-
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Figure 1: (A) Crystal structure cross sections of the
mechanosensitive channels mscs (2OAU) and mscl (2OAR).
(B) Pore outlines of the closed and open conformations [2, 3].
(C) Sketch of the channel embedded in a section of the mem-
brane. (D) Computational domain in cylindrical coordinates.
See the Appendix for details.

ping double layer at the channel’s charged surface, has
not been considered up to now.

The permeation pathways of both mscl and mscs are
funnel-shaped, with the conical vestibule opening to the
periplasmic side [2, 3], and the stem of the funnel lined
with uncharged hydrophobic residues (Fig. 1A). Upon
activation the pore walls move radially outward (Fig.
1B). In weakly polar channels, water can fill constrictions
down to the size of a single water molecule [13], but even
strongly hydrophobic channels are intermittently filled
with water [14, 13, 15]. Ions, on the other hand, are sub-
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ject to a strong repulsive potential of mean force (pmf)
up to channel radii much larger than the ionic radius,
caused by their hydration shells [16, 17, 18], steric and
van der Waals interactions and self energy [19]. Using
molecular dynamics (md) simulations, the energy bar-
rier for ion permeation through mscs has been estimated
to be 17–34 kBT [20], explaining the lack of electric con-
ductivity of mscs in the closed state despite its relatively
wide permeation pathway. A similar hydrophobic lock
mechanism has been found in mscl [2] and many dif-
ferent membrane channels [21, 22, 23]. Using mutation
analysis, it has been established that the hydrophobic
constriction in mscl provides a threshold for channel ac-
tivation [24].

Here, we present an alternative view of the gating
process, based on a model of a mechanosensitive chan-
nel consisting of the essential structural features found in
mscs and mscl: a funnel-shaped pore with an uncharged
hydrophobic stem and a vestibule carrying a fixed surface
charge density, embedded in an impermeable membrane
separating two solutions with salt concentrations c1 and
c2, respectively (Fig. 1C–D). This model is based di-
rectly on the experimentally determined protein crystal
structure, and aims to explain experimental work show-
ing, first, that added charge in the vestibule activates the
channel [6, 7, 8, 9, 12], and second, that the hydropho-
bicity of the constriction provides a barrier for channel
activation [24]. As an experimental benchmark, we con-
sider measurements showing that mscl and mscs are ac-
tivated at a hypotonic shock of at least c2−c1 = −0.3 M
[25]. We first summarize the main result in our paper,
and then explain in detail how we have obtained it and
examine various technical aspects and implication of our
findings.

� Emergence of two-state behavior. We find that
the tension on the channel wall results from a compe-
tition between contractile forces due to the ionic pmf

and the elastic membrane, and expansile forces due to
the charged vestibule. The striking result of this compe-
tition is that the nonequilibrium free energy landscape
G (R) [defined in Eq. (5)] exhibits two minima, corre-
sponding to the closed and open states (Fig. 2A). Under
isotonic conditions, exclusion of ions from the hydropho-
bic stem at small radii (inset 1 of Fig. 2A), which is
known to reduce the pressure between like-charged par-
allel plates [26], gives rise to an energy barrier between
the two states of ∼ 3 kBT . Remarkably, the energy bar-
rier arises naturally from only electrostatic and hydro-
dynamic forces. The second energy minimum is caused
by the expansile electrostatic force, which increases upon
hypotonic shock. Whereas for R < 1.2 nm the increased
electrostatic force is partly compensated for by the re-
duced pressure due to the ionic pmf (inset 2 of Fig. 2A),
the electrostatic force dominates when the height of the
repulsive potential in the stem of the funnel is negligible
for R > 1.2 nm, and the channel activates (inset 3 of Fig.
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Figure 2: (A) Nonequilibrium free energy [Eq. (5)] as a func-
tion of the channel radius R for different salt concentrations:
isotonic (c1 = c2 = 0.5 M) and hypotonic (c2 − c1 = −0.2 M,
−0.3 M and −0.4 M). For small radii, ions are excluded from
the stem area by the ionic pmf, leading to a contractile net
force under isotonic conditions at R = 1.0 nm (inset 1). After
hypotonic shock, the increased electrostatic pressure dimin-
ishes the net force (inset 2). At R = 1.5 nm, the ionic pmf

has vanished, ions enter the hydrophobic constriction and the
channel activates under influence of the expansile electrostatic
pressure (inset 3). (B) Electrical conductance of the channel
at a salt concentration of c1 = c2 = 0.3 M.

2A). For large R the elastic term overcomes the electro-
static repulsion. The first order transition between closed
and open states occurs at a hypotonic shock of approxi-
mately c2−c1 = −0.3 M, in quantitative agreement with
experimental results [25]. The channel activation is evi-
dent from the electrical conductance, which is shown in
Fig. 2B.

� Governing equations. The Poisson equation re-
lates the non-dimensional electrostatic potential ψ (x) =
eφ (x) /(kBT ), with φ (x) being the potential in volts and
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x = (r, z) being the position in cylindrical coordinates,
to the ion densities c± (x),

∇
2ψ (x) = −4πb [c+ (x)− c− (x)] , (1)

with b = e2/ (4πεε0kBT ) being the Bjerrum length. At
low Reynolds number, the solvent velocity u (x) is gov-
erned by the Stokes equations, which for an incompress-
ible fluid in steady state read

∇· [P (x) + T (x)]+f (x) = 0 and ∇·u (x) = 0. (2)

The components of the viscous and electrostatic stress
tensors P (x) and T (x) and the force density f (x) due
to the ionic pmf µ (x) are given by

Pij (x) = −p (x) δij + η [∇iuj (x) +∇jui (x)]

Tij (x) =
kBT

8πb

[

2∇iψ (x)∇jψ (x)− δij (∇ψ (x))
2
]

f (x) = −kBT [c+ (x) + c− (x)]∇µ (x) ,

(3)

with p (x) being the hydrostatic pressure, η being the
viscosity and i, j being r, z. The local concentrations
c± (x) of positive and negative ions are determined by
conservation of species. In steady state:

u (x) · ∇c± (x) = −∇ · J± (x) , (4)

with J±(x) = −D± [∇c±(x) + c±(x) (∇µ(x)±∇ψ(x))]
being the ion fluxes and D± = 1 nm2/ns being the corre-
sponding diffusion constants. We numerically solve Eqs.
(1)–(4) in the domain shown in Fig. 1D, which allows
us to analyze the diffusio-osmotic force exerted on the
channel wall for the first time.
� Boundary conditions. We employ a fixed sur-
face charge density in the conical vestibule of σ =
−0.5 enm−2 and uncharged boundaries everywhere else.
Guided by experimental design, we set c1 = 0.5 M
[25]. The hydrodynamic equations obey the no-slip
boundary condition on the surface of the membrane and
the vestibule, as is appropriate for hydrophilic surfaces
[27, 28]. Inside the hydrophobic stem, on the other hand,
perfect slip is assumed, consistent with the plug-like flow
found in hydrophobic nanotubes [29]. Note that assum-
ing no slip inside the stem instead leads to very simi-
lar results, implying that the model is robust regarding
the characteristics of the hydrodynamic flow inside the
constriction. Nevertheless, the hydrophobic stem and
its associated water structure crucially affect the ionic
pmf. In the stem area, we approximate the pmf by a
one-dimensional function µ (z,R), which is a good ap-
proximation for narrow channels [18], as we verify by de-
tailed calculations. See the Appendix for details. md

simulations show that the one dimensional ionic pmf

µ (z,R) in narrow channels exhibits a peak, reaching a
maximum µ0 (R) in the center of the channel, which de-
creases with increasing R [30, 18, 19, 17, 20]. At a ra-
dius of R = 1 nm, µ0 (R) is still several kBT ’s in short

nanopores [30]. Therefore, we model the ionic pmf by
a repulsive potential in the stem of the funnel of height
µ0 (R), that decreases linearly from µ0 (R) = 18 kBT at
R = 0.3 nm to zero at R = 1.2 nm. This potential com-
prises all interactions between the ions, the water and
the pore, including changes in the hydration state of the
pore [16]. The force on the surface S of the pore, con-
sisting of the stem and the vestibule, is calculated from
the normal stress, F (R) = −

∫

S
(P (x) + T (x)) · n̂ dx.

We calculate the nonequilibrium free energy landscape as
the sum of two terms: the integral over the radial force
Fr (R) due to the electrolyte, and an elastic term due to
the protein and the membrane,

G (R) = −

∫ R

R0

Fr (R
′) dR′ + πK

(

R2
−R2

0

)

, (5)

with R0 = 0.3 nm being the minimum channel radius.
For the elasticity coefficient of the protein and the mem-
brane we assumeK = 0.5 kBT nm−2, which is well within
the range of values quoted in literature [31]. See the Ap-
pendix for details of the calculation, the pmf and the
effect of the elastic restoring force.
� Ionic conductivity and fluid flow. We calculate
the electrical conductance (presented in Fig. 2B) from

C (R) = dI(R)
d∆ψ , with ∆ψ = ψ2 − ψ1 being an ap-

plied potential difference across the channel and I (R) =
e
∫

J+ (x)−J− (x)+u (x) [c+ (x)− c− (x)] dx being the
resulting electric current, where the integration can be
carried out over any plane spanning the pore 1. The con-
ductance is minute up to a radius of R = 1 nm (Fig. 2B),
owing to the repulsive pmf. Between 1.0 < R < 1.2 nm,
the conductance increases dramatically, before adopting
linear growth with R. The conductance of the open chan-
nel at c1 = c2 = 0.3 M agrees well with the experimental
values of 2.5− 3.7 nS measured for mscl [32, 4].

To examine the functionality of the channel, we moni-
tor the ion concentrations and water flux throughout the
activation process. In the closed state (R = 0.5 nm), the
ionic pmf excludes both ion types from the stem of the
funnel, as revealed by the concentrations c± (x) (Figs.
3A–B). In the open state (R = 1.5 nm), on the other
hand, ions flow through the channel uninhibited (Figs.
3C–D). In response to a hypotonic shock, water rushes
into the cell, driven by the osmotic pressure (arrows in
Fig. 3B). When the channel activates, ions flowing out-
ward through the channel drag the fluid along, and the
water flow reverses (arrows in Fig. 3D), thus reproducing
the experimentally observed behavior.
� Hydrostatic pressure. In vitro, also an ap-
plied hydrostatic pressure difference induces gating in
mechanosensitive channels. Applied pressure affects the
gating dynamics in two ways. First, the pressure exerts
tension directly on the channel wall. Even very large

1The asymmetry in the conductance with respect to the direc-

tion of the applied potential difference, which is due to the asym-

metric geometry of the channel, is negligible.
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Figure 3: Ion concentrations c+ (x) (left panels) and c− (x)
(right panels) and fluid velocity (arrows) for channels in the
closed (R = 0.5 nm) and open (R = 1.5 nm) states. Under
isotonic conditions, the fluid velocity is zero, and ions are
repelled from the stem region in the closed state (A), but not
in the open state (C). Under hypotonic conditions, the fluid
velocity is directed cell inward in the closed state (B) and
outward in the open state (D). The scale of the arrows in D
has been increased by a factor 40 relative to those in B.

pressure differences of 2 bar have only a minor influence
on the nonequilibrium free energy profile (Fig. 4A). Sec-
ond, the pressure reduces the effective elastic constant K
in Eq. (5) [5]. For changes in K close to the values used
in experiments (see the Appendix), this mechanism has
a much more profound effect, tilting the energy land-
scape toward the open state while preserving the two-
state character (Fig. 4B).

� Discussion. The use of continuum hydrodynamics
in nanometer-sized tubes has been shown to be justified
for radii in the nanometer range [29]; a noteworthy re-
sult, which can be rationalized by analytic arguments
[27] and has been used recently to calculate the hydro-
dynamic resistance of aquaporin channels [33]. Similarly,
the Nernst-Planck equation for ion transport is applica-
ble down to a radius of R = 0.3 nm, provided that the ion
concentrations are estimated accurately [34]. Ion concen-
trations at solid surfaces and lipid bilayers can be accu-
rately calculated from mean-field theory when the ionic
pmf, estimated using md simulations, is included as a
non-electrostatic contribution to the potential [35, 28].
Combined, extended mean-field theory and continuum
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Figure 4: Nonequilibrium free energy G (R) (Eq. 5) in case
of an applied hydrostatic pressure difference. (A) Different
pressure boundary conditions affect the tension exerted on the
channel wall. (B) Effect of the hydrostatic pressure induced
reduction of the effective elastic constant K.

hydrodynamics reproduce the electrokinetic properties
found in experiments and atomistic simulations of both
hydrophilic and hydrophobic surfaces [36, 37]. A com-
plementary view on the effect of solvent structure may
be obtained from kinetic theory [37, 38, 39]. Applicabil-
ity of the current approach is inherently limited to the
class of aqueous pores. Note, furthermore, that the gat-
ing process may not only involve the ion density, but
also collective variables, such as the water density inside
the channel and internal degrees of freedom of the pro-
tein. Capturing dewetting transitions, a collective effect
which may become important near the lower end of the
range of radii considered here, would require molecular
[40, 41, 16] or coarse-grained [42, 43] modeling. How-
ever, of primary interest here are the mesoscopic elec-
trokinetic properties of the channel, which we show to
be insensitive to the hydrodynamic characteristics of the
hydrophobic constriction. Although we will not be able
to predict the electrolyte dynamics inside the stem area
in atomic detail, this theoretical framework provides a re-
liable description of the electrokinetic properties at the
mesoscopic scale of the protein channel. Nevertheless,
solving the coupled Stokes-Poisson-Nernst-Planck equa-
tions in complex geometries has proven to be a challeng-
ing endeavor [44].

In conclusion, two-state mechanosensitive channel
gating emerges naturally from the electrokinetic trans-
port equations and an elastic restoring force in a ge-
ometry based on the crystal structure. Our proposed
gating mechanism is fully supported by mutation ex-
periments, showing a strong influence of protein sur-
face charge and hydrophobicity on the gating kinetics,
as well as hydrostatic pressure induced gating. More-
over, it agrees quantitatively with experiments regard-
ing hypotonic shock threshold and electrical conductiv-
ity. The activation mechanism can be verified further us-
ing mutation experiments, substituting charged residues
for neutral ones. Because hydrophobic constrictions and
charged vestibules are shared features of many different
ion channels, our analysis is likely to be important for a
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broad range of ion channels. Moreover, this new insight
into the gating mechanism constitutes an essential step
toward the design of artificial mechanosensitive channels
and ion channel-targeting therapeutics.
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Appendix

� Vorticity formulation. Inserting Eq. 3 into Eq. 2
and taking the curl results in the following equations for
the vorticity ω (x) = ∇× u (x) = ∇zur (x)−∇ruz (x),

η[r−3
∇̃

2
r ξ (x)−∇

2ω (x)] = ∇× [∇ · T (x) + f (x)]

ω (x) = r−1
(

∇
2
z + ∇̃

2
r

)

ξ (x) ,
(6)

with ∇̃2
r being given by r∇r r

−1∇r. From the latter
definition of ξ (x) it follows ur (x) = r−1∇z ξ (x) and
uz (x) = −r−1∇r ξ (x), which guarantees that the in-
compressibility condition is satisfied.

� Boundary conditions. At each boundary, the gov-
erning equations are complemented by one boundary
condition for the electrostatic potential, one boundary
condition for the ion flow and two boundary conditions
for the fluid flow velocity. The boundaries of the domain
are sketched in Fig. 1D, and the boundary conditions
used are summarized in Table A1. We denote the unit
normal vector on the surface, pointing outward from the
fluid, by n̂. At the solid surface and at the symmetry
boundary ξ (x) is constant and J± (x) · n̂ = 0, which
means there is no flow of water and ions perpendicular
to the surface. The no-slip boundary condition is set
by ∇ξ (x) · n̂ = 0, and perfect slip is characterized by
the absence of vorticity, ω (x) = 0. Setting the elec-
tric field proportional to the surface charge density σ at
the charged surface ensures overall charge neutrality, and
vanishing electric field and vorticity in the center of the
channel is a necessary condition for rotational symme-
try. The vorticity at the open boundary must vanish,
and ∇ξ (x) · n̂ = 0 because of translational invariance.
The fluid flux out of the domain is given by

φ =

∫

S

u (x) · n̂ dx, (7)

integrated along the open boundary of the domain. Since
ξ (x) = 0 at the membrane, integration of Eq. 7 leads
to φ = 2πξc. A fixed pressure difference is achieved by
adjusting ξc every iteration.

� Potential of mean force. The one dimensional
channel radius-dependent ionic pmf is modeled by a

Table A1: The boundary conditions for Eqs. 1–4. The unit
normal vector n̂ on the surface points outward from the fluid.

Boundary Stokes Poisson Nernst-Planck

Charged surface ξ = 0 ∇ψ · n̂ = 4πbσ J± · n̂ = 0

∇ξ · n̂ = 0

Uncharged surface ξ = 0 ∇ψ · n̂ = 0 J± · n̂ = 0

– no slip ∇ξ · n̂ = 0

– perfect slip ω = 0

Open boundary ∇ξ · n̂ = 0 ψ = ψ1 c± = c1

ω = 0 ψ = ψ2 c± = c2

Symmetry ξ = ξc ∇ψ · n̂ = 0 J± · n̂ = 0

ω = 0

block function of height µ0 (R), convoluted with a sphere
of radius a,

µ (z,R) =

µ0 (R)

4a3























(2a−z+zb)
2

(1−a−z+zb)
−1 if zb < z < zb + 2a

4a3 if zb + 2a < z < zt − 2a
(z−zt)

2

(3a+z−zt)
−1 if zt − 2a < z < zt

0 otherwise,

(8)

with zb and zt being the bottom and top positions of the
hydrophobic constriction, respectively, and a = 0.3 nm
being the radius of a hydrated ion. The pmf of Eq. 8
is shown in Fig. A1A, together with a sketch of the
computational domain on the same scale (Fig. A1B).
The height of the pmf in the center of the channel µ0 (R)
as a function of the channel radius R is estimated based
on atomistic molecular dynamics simulations [20, 17, 30],
analytical results for an infinitely long channel in a low-
dielectric continuum [19], and a hybrid method [45]. For
short channels, the pmf vanishes for sufficiently large R.
The radius where µ0 (R) reaches zero is based on the
range of the short-range non-electrostatic interaction in
water, which typically extends up to approximately 1 nm
away from the interface [28],

µ0 (R) =

{

18− 20 (R− 0.3) if d < 1.2 nm

0 otherwise.
(9)

The function of Eq. 9 is shown in Fig. A1C together
with the literature estimates mentioned above.

� Two-dimensional potential of mean force. The
approximation of the pmf by a one-dimensional function
µ (z,R) is a good approximation for narrow channels [18].
For wider channels, the pmf may depend on the radial
coordinate as well. Although no accurate pmfs are avail-
able for mechanosensitive channels, we can estimate the



Phys. Rev. Lett. 113, 148101 (2014) 6

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

R (nm)

0

10

20

30

40

50

Parsegian

Anishkin

Richards

Beckstein

This work

μ
0

BA

-5

0

5

μ (z)

0 μ0

C

z
 (

n
m

)

r (nm)
50

zt

zb
2a

Zwolak

Figure A1: (A) The ionic potential of mean force (pmf) µ (z)
in units of kBT (Eq. 8). (B) The computational domain.
The parameters a, zb and zt of Eq. 8 are indicated. (C)
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effect of a pmf perpendicular to the channel wall by cal-
culating the free energy of two parallel plates separated
by a distance d, for which detailed pmfs have been cal-
culated using molecular dynamics simulations [28]. We
calculate the free energy per unit area as described in Ref.
[46], using two contributions to the pmf: one repulsive
component due to the confinement in the nanochannel,
and one component perpendicular to the channel’s sur-
face. The first component is given by the function used
for µ0 (R) in cylindrical geometry, with the distance be-
tween the plates d = 2R,

µ0 (d) =

{

18− 10 (d− 0.6) if d < 2.4 nm

0 otherwise.
(10)

For the component perpendicular to the surface we use
the pmf for nacl at hydrophilic and hydrophobic self as-
sembled monolayers, which have a similar structure as
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Figure A2: Free energy per unit area of two parallel plates
at distance d between (A) hydrophobic uncharged surfaces,
using µ (x, d) = µ0 (d) + µnacl (x, d), and (B) hydrophilic sur-
faces with σ = −0.5 e/nm2, using µ (x, d) = µnacl (x, d).

the protein surface [28]. To account for the effect of both
plates, the pmf at a single plate µ̃nacl (x), with x the
distance from the plate, is modified for the parallel plate
geometry using µnacl (x, d) = µ̃nacl (x) + µ̃nacl (d− x).
Mimicking the conditions in the hydrophobic constric-
tion, the free energy is shown in Fig. A2A for two
uncharged hydrophobic parallel plates using µ0 (d) from
Eq. 10 with and without the perpendicular component
µnacl (x, d). Mimicking the charged vestibule, the free en-
ergy of charged hydrophilic surfaces (σ = −0.5 e/nm2)
is shown in Fig. A2B, using µ0 (d) = 0 with and without
the perpendicular component of the pmf. Although tak-
ing the perpendicular component of the pmf into account
gives rise to clear quantitative differences, the important
qualitative features of the energy profiles are not affected.
In particular, the contractile force between hydrophobic
plates at short distances and the expansile force between
the charged hydrophilic plates are captured well when us-
ing only µ0 (d). At the same time, the graphs show that
in future work, a more detailed two-dimensional pmf for
mechanosensitive channels could be used to refine the
current calculations.
� Effect of the ion diffusion coefficient. The ion
diffusion coefficient inside a narrow channel is different
from the bulk value. Calculations based on atomistic
molecular dynamics simulations indicate that the diffu-
sion constant inside a Gramicidin channel is reduced to
70% of its bulk value [47]. To estimate the effect of a
varying ion diffusion coefficient on our calculations, we
calculate the nonequilibrium free energy profile for half
and twice the original value of D± = 1 nm2/ns, keeping
D± constant in space. The effect of varying D± by these
amounts is negligible, from which we infer that also the
small spatial variation of D± found in atomistic simula-
tions is unlikely to affect the nonequilibrium free energy
landscape.
� The effective elastic restoring force. The prefactor
K of the elastic term in Eq. 5 parameterizes the com-
bined response of the protein and the membrane to radial
displacements. This constant is likely to be different for
different proteins, depending on whether the transmem-
brane domain consists of alpha helices, a beta barrel, or
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any other architecture. In addition, the effective force
is reduced by an applied hydrostatic pressure difference
[5], as explained in the main text. For a given experi-
ment, where a pressure difference across the bilayer of a
giant vesicle is applied using a pipette, the relation be-
tween the applied pressure difference ∆p and the change
in bilayer tension ∆K is given by [48]

∆K =
Rp ∆p

2 (1−Rp/Rv)
, (11)

with Rp and Rv being the radius of the pipette and
the vesicle, respectively. Early experiments on E. coli

mechanosensitive channels found gating at applied pres-
sures of tens of mm Hg and almost full activation at ∆p =
40 mm Hg, using a pipette of Rp = 0.5 µm on a vesicle of
Rv = 6 µm [49], corresponding to ∆K = 0.35 kBT/nm

2.
In Fig. 4B, we show the nonequilibrium free energy pro-
file, calculated using Eq. 5, for different values of the
effective elastic constant, all within the literature range
of 10−4 − 1 kBT/nm

2 [31]. Whereas for low K (flexi-
ble protein or strong hydrostatic pressure difference) the
energy landscape is tilted toward the open state, the two-
state character vanishes for high K (rigid protein).
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