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1 Introduction

Unlike bulk water, water at aqueous interfaces exhibits
a pronounced anisotropic molecular ordering. The wa-
ter density shows a depletion in the interfacial region,
to an extent depending on ambient pressure and tem-
perature [1] and on the hydrophobicity of the surface
[2]. Moreover, at soft surfaces, such as air-water in-
terfaces, the density increases monotonically, whereas at
most solid surfaces the water molecules arrange in dis-
tinct layers, leading to an oscillating density profile [3].
Finally, vibrational spectroscopy experiments show that
the water molecules in the interfacial region are pref-
erentially oriented with their dipole moments pointing
roughly along the surface plane at both air-water inter-
faces [4] and quartz-water interfaces [5, 6]. For macro-
scopic solutes, this molecular structure strongly affects
both their static properties, such as double-layer capac-
itance and surface conductance, and their dynamic be-
havior, such as electro-osmotic mobility.

In this chapter, we present a modeling approach
where we calculate the molecular properties, in partic-
ular the dielectric profile, from molecular dynamics (md)
simulations and incorporate the results into a modified
Poisson-Boltzmann equation. Our md simulations show
that the aqueous interface can be characterized by two
largely independent characteristic length scales: the di-
electric dividing surface, based on the dielectric profile,
and the Gibbs dividing surface, based on the water den-
sity profile. Using these two interface characteristics, we
estimate two of the main contributions to the interaction
between a surface and a single ion.

2 Calculation of the dielectric profile

If the electric field is independent of the spatial coordi-
nates r, E (r) = E, a change in the global electric field
∆E is related to a change in the local displacement field
∆D (r) by the tensorial local response function ε (r),

∆D (r) = ε0ε (r) ·∆E, (1)

with ε0 being the permittivity of vacuum and ε (r) being
the integral over one argument of the nonlocal dielectric
response function [7]. Similarly, a change in the homo-
geneous displacement field, ∆D, is related to a change
in the local electric field ∆E (r) by the inverse dielectric
response function ε−1 (r),

∆E (r) = ε−1
0 ε−1 (r) ·∆D, (2)

with ε−1 (r) the inverse dielectric function. To calcu-
late the dielectric function from the polarization of the
medium, the electric field E (r) is separated into the
displacement field D (r), associated with the monopole
density P0(r), and the polarization m (r), generated by
all higher order multipole moments, ε0E (r) = D (r) −
m (r). We consider water at a planar surface, having
translational invariance in the x and y directions and a
dielectric discontinuity in the z direction. In this planar
geometry, the dielectric tensor is diagonal with only two
unique components, one parallel and one perpendicular
to the surface, and the electric field and the polarization
density depend on the z direction only. Maxwell’s equa-
tion ∇×E (z) = 0 implies that E‖, corresponding to Ex
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or Ey, is independent of z everywhere. With the symme-
try condition ∆E‖ = E‖, the parallel component of Eq.
1 becomes

ε‖ (z) = 1 +
∆m‖ (z)

ε0E‖
. (3)

When the monopole density P0 (z) = 0, Maxwell’s equa-
tion for the displacement field, ∇ ·D (z) = P0 (z), shows
that the displacement field is constant in space. Using
the boundary condition ∆D⊥ (z) = D⊥, the perpendicu-
lar component of the inverse dielectric function given in
Eq. 2 becomes

ε−1
⊥ (z) = 1− ∆m⊥ (z)

D⊥
. (4)

Applying an external electric field, the dielectric tensor
can be calculated directly from Eqs. 3 and 4. To esti-
mate the dielectric response from the fluctuations of the
polarization in absence of an external field, we use a sta-
tistical mechanical expression for the excess polarization
∆m (r) upon application of an external field. For small
applied field F , the linearized ensemble average of the
excess polarization vector is given by [8, 9, 10]

∆m (r) ≈ β [〈m (r)M〉0 − 〈m (r)〉0〈M〉0] · F , (5)

where 〈. . . 〉0 denotes the ensemble average without ap-
plied electric field. In order to determine the dielectric
tensor, we need to know the relation between the ap-
plied field F in Eq. 5 and ∆E or ∆D in Eqs. 1 and
2. In the direction parallel to the surface, the homoge-
neous applied field F‖ in Eq. 5 must correspond to the
homogeneous field E‖. Therefore, combining Eqs. 3 and
5 leads to

ε‖ (z) ≈ 1+ε−1
0 β

[

〈m‖ (z)M‖〉0 − 〈m‖ (z)〉0〈M‖〉0
]

. (6)

In the direction perpendicular to the surface, the spa-
tially constant field F⊥ must be associated with the
homogeneous displacement field D⊥/ε0. Consequently,
combining Eqs. 4 and 5, we arrive at the fluctuation
equation for the inverse perpendicular permittivity,

ε−1
⊥ (z) ≈ 1− ε−1

0 β [〈m⊥ (z)M⊥〉0 − 〈m⊥ (z)〉0〈M⊥〉0] .
(7)

The polarization m (r) can be calculated in two different
ways. The first method is to express m (r) in terms of
the multipole densities [11, 7]

m (r) = P 1 (r)−∇ · P2 (r) +∇∇ : P3 (r)− . . . . (8)

The terms written explicitly are the dipole density P 1,
the quadrupole density P2 and the octupole density P3.
When each molecule i is composed of atoms j with point
charges qij at positions rij , the terms of Eq. 8 are set by
the spatial distribution of partial charges,

Pl(r) =
∑

i

pliδ (r − ri) with pli =
1

l!

∑

j(i)

qij
(

r
i
j − ri

)l
,

(9)

Figure 1: The inverse perpendicular dielectric profile (blue
solid lines), calculated using Eqs. 7 and 10, for spc/e water
at (a) a hydrophilic (hydroxide-terminated) and (b) a hy-
drophobic (hydrogen-terminated) diamond surface. See [7]
for details of the md simulations. Also shown is the step-
function approximation of Eq. 12 (red dashed lines).

where pli denotes the molecular multipole moment of or-
der l ∈ {0, 1, 2, . . . }, and ri is some reference point in
the molecule. Alternatively, the perpendicular polariza-
tion density in absence of free charges, P0 (z) = 0, is
calculated from an integral over the total charge density
ρ (z) =

∑

i,j q
i
jδ

(

r − r
i
j

)

,

m⊥ (z) = −
∫ z

0

ρ (z′) dz′. (10)

To calculate the polarization m‖ in the direction parallel
to the surface, we introduce a virtual cut perpendicular
to the x axis, where the x direction can be any direction
parallel to the surface. We only cut the water molecules
at the position of the virtual cut, closing the volume
without cutting any other molecules. By cutting the vol-
ume, some water molecules are split, forming a non-zero
monopole density P0 (x, z) on either side of the virtual
cut, where the x dependence of P0 (x, z) has the form of
a Dirac delta function at the position of the cut. For
more details, see [7]. The parallel polarization density is
calculated from

m‖ (z) = ±
∫

P0 (x, z) dx, (11)

where the different signs apply to closing the volume and
integrating P0 (x, z) on the different sides of the cut. To
calculate m‖ (z), Eq. 11 is averaged over many different
cut positions along the x axis.

The dielectric profiles calculated from either the fluc-
tuations or the response to an applied field, and using ei-
ther of the methods described above to calculate m (r),
all coincide [7]. Interestingly, ε−1

⊥ (z) shows strong oscil-
lations – even passing through zero several times – within
the first few water layers, reflecting the molecular struc-
ture at the interface (Fig. 1).



In “Electrostatics of Soft and Disordered Matter”, pp. 129–142, Pan Stanford Publishing (2014) 3

2.1 Construction of the dielectric dividing

surface

For further investigation of the effect of the dielectric
profile on macroscopic interfacial properties, such as the
double-layer capacitance, the electrophoretic mobility
and the surface conductivity, it is convenient to simplify
the dielectric profile. We approximate the profile shown
in Fig. 1 with a step function,

ε⊥ (z) =

{

1 if z < zdds⊥

εbulk otherwise.
(12)

The dielectric dividing surface position in Eq. 12 is de-
fined as

zdds⊥ = zv +

∫ zl

zv

ε−1
⊥ (zl)− ε−1

⊥ (z)

ε−1
⊥ (zl)− ε−1

⊥ (zv)
dz, (13)

with zv and zl being positions in the solid and liquid
phase, respectively. The profile in Eq. 12 is designed to
reproduce the electrostatic potential calculated in molec-
ular dynamics simulations at positions z & 1 nm from
the interface [12]. The definition of the dielectric divid-
ing surface in Eq. 13 is analogous to the definition of the
Gibbs dividing surface, which follows from Eq. 13 by re-
placing the dielectric profile ε−1

⊥ (z) by the water density
profile. On a simple level, the effects of the dielectric pro-
file and the density profile can be quantified using these
two length scales. For zdds⊥ we use two different values:
zdds⊥ = 0.10 nm, corresponding to a hydrophilic surface,
and zdds⊥ = 0.12 nm, corresponding to a very hydropho-
bic surface [7]. With its insensitivity to surface type, zdds⊥

stands in strong contrast to the Gibbs dividing surface
zgds, which lies much closer to the surface at hydrophilic
surfaces (zgds = 0.07 nm) than at hydrophobic surfaces
(zgds = 0.22 nm). The inverse dielectric profiles ε−1

⊥ (z)
in the step-function approximation of Eq. 12 are shown
as red dashed lines in Fig. 1.

3 The modified Poisson-Boltzmann

equation

At charged surfaces, the monopole density P0 (z) is non-
zero, and consequently the displacement field D⊥ (z) is
not homogeneous. Therefore, we use the local assump-
tion that the electric field E⊥ (z) is linearly related to
D⊥ (z) by ε−1

⊥ (z),

ε0E⊥ (z) = ε−1
⊥ (z)D⊥ (z) . (14)

Eq. 14 is a good approximation in case of a slowly vary-
ing D⊥ (z) [12, 13]. Taking the derivative of Eq. 14
and using ∇ψ (z) = −E⊥ (z), with ψ (z) the electrostatic
potential, and ∇D⊥ (z) = P0 (z), with P0 (z) the ionic
charge density, the Poisson equation is transformed into
an integro-differential equation,

ε0∇2ψ (z) = −ε−1
⊥ (z)P0 (z)−D⊥ (z)∇ε−1

⊥ (z) , (15)

with the displacement field D⊥ (z) being given by

D⊥ (z) =

∫ z

0

P0 (z
′) dz′. (16)

Considering a solution of monovalent ions, the free charge
density is calculated from the ionic densities c+ (z) and
c− (z),

P0 (z) = e (c+ (z)− c− (z)) , (17)

with e the absolute charge of an electron. To ensure that
the ionic density does not exceed its physical limit set by
the ionic volume, we include a fermionic steric interaction
to calculate the ionic densities from the unrestricted ionic
densities c̃+ (z) and c̃− (z) [14, 15, 16, 17, 18],

c± (z) =

√
2 c̃± (z)√

2 + a3+ (c̃+ (z)− c0) + a3− (c̃− (z)− c0)
,

(18)
with c0 the bulk salt concentration and a+ and a− the
diameters of positive and negative ions, respectively. The
denominator in Eq. 18 restricts the maximum density
c± (z) to

√
2 a−3

± , which is the maximum density of close-
packed (face-centered cubic or hexagonal close-packed)
spheres of diameter a±. The unrestricted ionic densities
c̃+ (z) and c̃− (z) follow the Boltzmann distribution

c̃± (z) = c0 exp [−µ± (z)∓ βeψ (z)], (19)

with β being the inverse thermal energy and µ+ (z) and
µ− (z) being the non-electrostatic contributions to the
potentials of the positive and negative ions, respectively.
Combining Eqs. 15-19 yields the modified Poisson-
Boltzmann equation. It should be noted that the steric
interaction of Eq. 18 becomes important only in case of
high surface charge density, high salt concentration or
large ion size [19]; its effect on the calculations presented
here is minor.

For the non-electrostatic potential µ± (z), we use a
heuristic function of the form

µ± (z) = α exp [1− 2z/a±] . (20)

Beyond 1 nm away from the interface, the potential of
mean force – which includes dielectric as well as non-
electrostatic effects – typically shows a decreasing shape
that can be well approximated with the exponential form
of Eq. 20 [20, 21].

3.1 Double-layer capacitance

To demonstrate the experimentally relevant conse-
quences of the dielectric profile determined in Section 3,
we calculate the double-layer capacitance and compare
the result to experimental data. We solve Eqs. 15-19
at a surface with surface charge density σ0, using the
boundary conditions lim

z→∞
ψ (z) = 0 and overall charge

neutrality. The capacitance C is calculated in the limit
σ0 → 0 from C = dσ0/dψ0, with ψ0 the potential at
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Figure 2: Double-layer capacitance C as a function of the
bulk salt concentration c0. Symbols represent experimental
results on different kinds of (a) hydrophilic and (b) hydropho-
bic carbon-based surfaces [12]. Curves represent theoretical
results using ε⊥ (z) = εbulk with µ± (z) = 0 (dashed lines),
ε⊥ (z) from Eq. 12 with µ± (z) = 0 (solid lines), and ε⊥ (z)
from Eq. 12 with µ± (z) from Eq. 20 using α = 1 (dotted
lines). The ionic diameter a± = 0.3 nm for all curves.

z = 0. Assuming ε⊥ (z) = εbulk (dashed lines in Fig. 2),
the result of the Poisson-Boltzmann equation overesti-
mates the experimental data by one order of magnitude.
Better agreement with the experimental data is obtained
when the dielectric profile is taken into account via Eq.
12 (solid lines in Fig. 2), which effectively introduces an
interfacial layer with a low dielectric constant, much alike
the Stern layer [22]. The experimental results can be fit-
ted quantitatively using the non-electrostatic potential
µ± (z) of Eq. 20 in addition to the dielectric profile (dot-
ted lines in Fig. 2), where the interaction strength α is
used as a fitting parameter to account for the data spread
due to the different surface materials and ion types used
in the experiments. The interaction strength needed to
fit the data is of order unity; for the dotted curves in
Fig. 2 we have used α = 1. Interestingly, the experi-
mental data demonstrate that the hydrophobicity of the
surface has no significant influence on the double-layer
capacitance, which can be viewed as a confirmation of
our result that the values of zdds⊥ hardly differ between
the two surface types.

Using the modeling approach presented in Secs. 2 and
3 in conjunction with a modified Navier Stokes equation,
we have also been able to theoretically model electroki-
netic measurements, in particular the electrophoretic mo-
bility and the so-called anomalous surface conductivity
[23].

4 Ion-specific effects

In the calculations expounded in Section 3, the potential
energy of an ion consists of the electrostatic energy of
a point charge in the mean electrostatic potential, and
a non-electrostatic term for which the simplified form of
Eq. 20 is used. Experimentally, however, the energy
of interaction between an ion and a surface is found to

depend on the ion’s chemical properties, such as size,
charge and polarizability, and is strongly ion-specific [24].
Models of the specific ion-surface interaction have been
developed based on polarizability and hydration effects
[25, 26]. Equally important for the ion-specific interac-
tion are the molecular structure of the interfacial wa-
ter and the chemical properties of the surface [21]. The
combined potential due to the aforementioned effects is
termed the potential of mean force (pmf), which can be
incorporated into the Poisson-Boltzmann equation as a
non-electrostatic contribution to the potential. Previous
attempts, however, to split the pmf into contributions
from the Lennard-Jones potential, the polarizability, the
image charge potential and the electrostatics of the or-
dered water molecules, have failed to capture the results
from atomistic md simulations [20].

Figure 3: (a) Image charge potential Ui (z) − Ub of a non-
polarizable (Utc (z) [27]) and a perfectly polarizable (Ul (z)
[25]) ion of diameter d± = 0.3 nm in the dielectric profile
of Eq. 12. Also shown is the flawed Kharkats & Ulstrup
potential Uku (z) [28, 29]. (b) Hydration potential Uh (z) (Eq.
22) and the sum Uh (z) + Ui (z) − Ub at (c) hydrophilic and
(d) hydrophobic surfaces, using Ui (z) = Utc (z), for ions of
different diameter a± = d± (legend as in b). Positions of the
dielectric dividing surface (dashed vertical lines) and Gibbs
dividing surface (dotted vertical lines) are also shown.

Based on the two length scales discussed above, the
Gibbs dividing surface zgds and dielectric dividing sur-
face zdds⊥ , we design a model for ion-surface interactions
that combines the image charge potential, which does
not appear in a proper mean-field formulation, and the
non-electrostatic hydration energy. The model is aimed
at capturing the main features of the ionic pmf. The
image potential depends on the distance z′ to the dielec-
tric dividing surface position, z′ = z − zdds⊥ , and on the
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size of the ion. For the latter, we introduce the dielectric
diameter d± as a second ionic diameter next to the ionic
hard-sphere diameter a±. The dielectric diameter can
be estimated by equating the experimental solvation free
energy to the sum of the electrostatic energy and the cav-
ity hydration energy. Because the cavity contribution to
the solvation free energy can be neglected for small ions,
the dielectric diameter can be approximated by equating
the ionic solvation free energy to the electrostatic energy
Ub (1− εbulk), with Ub being the Born free energy, given
by

Ub =
βe2

4πd±ε0εbulk
. (21)

For small ions, we expect that d± > a±, reflecting the
observation that diameters inferred from the solvation
free energy are larger than cavity diameters measured
with diffraction methods [30]. Given the hydrophilic na-
ture of small ions, it also conforms with our result that
zdds⊥ > zgds at hydrophilic surfaces. However, the re-
lation between a± and d± may be different for larger
ions. In the following calculations, we choose a± = d±
for simplicity. The image potential Ui (z) with respect to
the Born energy Ub is calculated numerically for a non-
polarizable finite-sized ion with d± = 0.3 nm (Utc (z) in
Fig. 3a) [27]. Also shown in Fig. 3a are an approxi-
mate expression for a perfectly polarizable ion, denoted
Ul (z) [25], and the flawed expression Uku (z) [28, 29]
used in previous studies [7], the latter of which lies in
between the results for a perfectly polarizable and a non-
polarizable ion. In order to compare to md simulations
with non-polarizable force fields, we use Ui (z) = Utc (z)
to calculate the total interaction energy.

In addition to the repulsive image potential, the ions
are subject to an attractive hydration potential, scaling
with the hydrated volume of the ion [31, 32, 33]. Cal-
culating the ionic volume from the hard-sphere cavity
diameter a±, the hydration energy is given by

Uh (z) =







−π
6 a

3
±βC if 2z′′<−a±
0 if 2z′′ > a±

− π
12 (a± − 2z′′)

2
(z′′ + a±)βC otherwise,

(22)
with z′′ = z − zgds, β being the inverse thermal energy
and C = 2.8× 10−19 J/nm3 being the hydration energy
of an uncharged cavity in bulk water [34]. Importantly,
Ui (z) and Uh (z) act with respect to different surface
positions: while the image potential acts with respect
to zdds⊥ (Fig. 3a), the hydration potential of Eq. 22
acts with respect to zgds (Fig. 3b). A major difference
between hydrophilic and hydrophobic surfaces is that
whereas zgds < zdds⊥ at hydrophilic surfaces, their order
is reversed at hydrophobic surfaces. Because zgds > zdds⊥

at hydrophobic surfaces, the influence of the attractive
hydration potential is much more pronounced than it is
at hydrophilic surfaces. The total interaction potential
Uh (z)+Ui (z)−Ub clearly reflects this difference between

hydrophilic (Fig. 3c) and hydrophobic (Fig. 3d) surfaces:
whereas big ions (d± = 0.6 nm, corresponding to iodide)
are repelled from hydrophilic surfaces, they are adsorbed
on to hydrophobic surfaces, similar to the results of re-
cent md simulations [21]. Small ions (d± = 0.3 nm, corre-
sponding to fluoride and sodium) are repelled from both
surface types.

5 Summary and conclusions

We have presented the theoretical framework to extract
the dielectric profile of interfacial water from md simu-
lations. Incorporating the dielectric profile into a modi-
fied mean-field description of the interfacial electrostat-
ics, we have shown that taking the dielectric properties of
pure interfacial water into account is necessary to capture
the experimental values of the double-layer capacitance.
Characterizing the dielectric profile and the density pro-
file of water with two independent length scales, namely
the dielectric dividing surface and the Gibbs dividing sur-
face, a simple calculation of the ion-surface interaction
potential exhibits a conspicuous difference between hy-
drophilic and hydrophobic surfaces: large ions that are
readily adsorbed on to hydrophobic surfaces are still re-
pelled from hydrophilic ones.

References

[1] Mamatkulov, S. I., Khabibullaev, P. K. & Netz,
R. R. Water at hydrophobic substrates: Curvature,
pressure, and temperature effects. Langmuir 20,
4756 (2004).

[2] Sendner, C., Horinek, D., Bocquet, L. & Netz, R. R.
Interfacial water at hydrophobic and hydrophilic
surfaces: Slip, viscosity, and diffusion. Langmuir
25, 10768 (2009).

[3] Sedlmeier, F. et al. Water at polar and nonpolar
solid walls. Biointerphases 3, FC23 (2008).

[4] Du, Q., Superfine, R., Freysz, E. & Shen, Y. R.
Vibrational spectroscopy of water at the vapor water
interface. Phys. Rev. Lett. 70, 2313 (1993).

[5] Du, Q., Freysz, E. & Shen, Y. R. Surface vibrational
spectroscopic studies of hydrogen bonding and hy-
drophobicity. Science 264, 826 (1994).

[6] Du, Q., Freysz, E. & Shen, Y. R. Vibrational spectra
of water molecules at quartz/water interfaces. Phys.
Rev. Lett. 72, 238 (1994).

[7] Bonthuis, D. J., Gekle, S. & Netz, R. R. Profile of
the static permittivity tensor of water at interfaces:
Consequences for capacitance, hydration interaction
and ion adsorption. Langmuir 28, 7679 (2012).



In “Electrostatics of Soft and Disordered Matter”, pp. 129–142, Pan Stanford Publishing (2014) 6

[8] Kirkwood, J. G. The dielectric polarization of polar
liquids. J. Chem. Phys. 7, 911 (1939).
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[16] Kralj-Iglič, V. & Iglič, A. Influence of finite size
of ions on elecrostatic properties of electric double
layer. Electrotechnical Review (Ljubljana, Slovenija)
61, 127 (1994).

[17] Borukhov, I., Andelman, D. & Orland, H. Steric ef-
fects in electrolytes: A modified Poisson-Boltzmann
equation. Phys. Rev. Lett. 79, 00319007 (1997).

[18] Borukhov, I., Andelman, D. & Orland, H. Adsorp-
tion of large ions from an electrolyte solution: A
modified Poisson-Boltzmann equation. Electrochim.
Acta 46, 221 (2000).

[19] Bazant, M. Z., Kilic, M. S., Storey, B. D. & Ajdari,
A. Towards an understanding of induced-charge
electrokinetics at large applied voltages in concen-
trated solutions. Adv. Colloid Interface Sci. 152, 48
(2009).

[20] Horinek, D. et al. Molecular hydrophobic attraction
and ion-specific effects studied by molecular dynam-
ics. Langmuir 24, 1271 (2008).

[21] Schwierz, N., Horinek, D. & Netz, R. R. Reversed
anionic Hofmeister series: The interplay of surface
charge and surface polarity. Langmuir 26, 7370
(2010).

[22] Stern, O. Zur Theorie der elektrolytischen Dop-
pelschicht. Z. Elektrochem. 30, 508 (1924).

[23] Bonthuis, D. J. & Netz, R. R. Unraveling the com-
bined effects of dielectric and viscosity profiles on
surface capacitance, electro-osmotic mobility, and
electric surface conductivity. Langmuir 28, 16049
(2012).

[24] Kunz, W. Specific ion effects in colloidal and bio-
logical systems. Curr. Opin. Colloid Interface Sci.
15, 34 (2010).

[25] Levin, Y. Polarizable ions at interfaces. Phys. Rev.
Lett. 102, 147803 (2009).

[26] Dos Santos, A. P., Diehl, A. & Levin, Y. Surface
tensions, surface potentials, and the hofmeister se-
ries of electrolyte solutions. Langmuir 26, 10778
(2010).

[27] Tamashiro, M. N. & Constantino, M. A. Ions at the
water-vapor interface. J. Phys. Chem. B 114, 3583
(2010).

[28] Kharkats, Y. I. & Ulstrup, J. The electrostatic
Gibbs energy of finite-size ions near a planar bound-
ary between 2 dielectric media. J. Electroanal.
Chem. 308, 17 (1991).

[29] Markin, V. S. & Volkov, A. G. Quantitative theory
of surface tension and surface potential of aqueous
solutions of electrolytes. J. Phys. Chem. B 106,
11810 (2002).

[30] Marcus, Y. Ionic radii in aqueous solutions. Chem.
Rev. 88, 1475 (1988).

[31] Horinek, D. et al. Specific ion adsorption at the
air/water interface: The role of hydrophobic solva-
tion. Chem. Phys. Lett. 479, 173 (2009).

[32] Huang, D. M., Geissler, P. L. & Chandler, D. Scal-
ing of hydrophobic solvation free energies. J. Phys.
Chem. B 105, 6704 (2001).

[33] Hummer, G., Garde, S., Garćıa, A. E., Paulaiti,
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