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Introduction

The radius of gyration (Rg) is one of the most common parameters to be extracted from small-angle X-ray/neutron scattering (SAXS, SANS) measurements of nanoparticles and combines information about size,
shape, symmetry and homogeneity in one single value. The analytical expressions for Rg are well known for simple geometric shapes (spheres, ellipsoids, cylinders, cubes). In this work, the analytical equations for
Rg for other homogeneous (constant electron or scattering length density) shapes like cones, pyramids, paraboloids, hemispheres or tori are derived and are compiled in this poster. In this approach, the Rg of
different 3-dimensional objects can be composed of a 2-dimensional cross-sectional (Rc) and of a perpendicular (h) contribution. Thus, Rg? is the linear sum of both: Rg? = f1*Rc? + f2*h?, with h being the height or
diameter of the object in the perpendicular direction to the cross-section and f1 and f2 being multiplicative factors with values depending on the geometric shape. The cross-sectional area can be (semi-)circular,
(semi-)elliptic, n-polygonal or rhombic, resulting in a conical, pyramidal, ellipsoidal or paraboloidal 3D-shape, depending on the perpendicular component. A mirror-symmetry in the cross-sectional plane may be
present (e.g. ellipsoids, bi-cones or bi-pyramids) or absent (e.g. hemispheres or single cones or pyramids). General equations of Rc for regular (equilateral) n-polygons will be given, but also for non-equilateral
polygonal (rectangular, triangular) and rhombic cross-sections. Furthermore, the analytical equations of Rg of nanoscaled particles of high symmetry, in particular of convex polyhedra like the 5 Platonic solids
(tetra-, hexa-, octa-, dodeca- and icosa-hedron) or the 13 Archimedean solids and their duals (Catalan solids) are presented, for the solid, for the hollow (faces only) and as well as for the skeletal (edges only) and
dot (vertices only) shape.
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paraboloid or solid/shell semi-ellipsoid. The terms “Bi-“ and “Double-”, respectively, refer to shapes where the solids/shells are attached
symmetrically at a mirror-plane which is either the cross-section (“Bi-“) or the apex (“Double-“) of the solid/shell, resulting in a bi- or double-
cone/paraboloid or ellipsoid with total height or diameter h in the z-direction. The shape’s centroid in these cases would be at z = h/2
(location of the mirror-plane). The z-axis (perpendicular to the cross-section) passes through the cross-sectional centroid and the apex.

In case of a torus h is the diameter of the torus-ring (the ring passes through the centroid of the tubular cross-section and the centroid of the
entire torus is located at the origin of the torus radius (h/2).

Tab.2: These equations for Rc (squared) can be used in equ. (1) for
R g-calculations for prisms, cones, pyramids and tori. For tori the
weighting factors for ra and rb for calculating Rc (equ. 2b) are 3/8
and 1/8, respectively, with ra parallel to the torus-plane and rb
parallel to the torus z-axis.
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Tab.4: In these equs. ri,rm,rc are the radii of the in-sphere, mid-sphere and circum-

sphere of the respective Platonic solid which can be calculated as a function of edge Tab.5: The values for the Radius of Gyration of the solid (Rgs), of the faces (Rgf), of the edges (Rge)
length a [3]. The parameter Rc is the cross-sectional Radius of gyration of the respective and of the vertices (Rgv) of the 13 Archimedean Solids and their corresponding Duals, the Catalan
polygonal face which the Platonic Solids consist of. Rc can be computed by equ. (2), Solids, all with their respective volume normalized to V=1, are compiled together with the number of
using a triangle for the Tetra-, Octa- and lcosahedron (T, O, 1), a square for the the faces (f), edges (e) and vertices (v) for each polyhedron. All these polyhedra can be decomposed
Hexahedron (H) and a pentagon for the Dodecahedron (D), respectively, with into pyramids with n-polygonal bases. For comparison, also the Rg-values for a sphere with the same
(equilateral) edge lengths a. volume (V=1) are given. Units are arbitrary.

RG-calculator on the Web:
http://www.staff.tugraz.at/manfred.kriechbaum/xitami/java/rgpoly.html
http://www.staff.tugraz.at/manfred.kriechbaum/xitami/java/rgplaton.html
http://www.staff.tugraz.at/manfred.kriechbaum/xitami/java/rgpolyhedra.html
http://www.staff.tugraz.at/manfred.kriechbaum/xitami/java/rgy3.html
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