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Preface

Most existing books on X-ray small angle scattering were published several
years ago and recent reviews give detailed information only on special appli-
cations. We therefore felt that a book giving a compact presentation of the
basic theory, techniques and applications at the present stage would fill a real
gap in the literature. We accepted the kind invitation of Academic Press to edit
and to contribute to such a book as we believe that the method of small angle
X-ray scattering is now fully developed. The theory is complete, the exper-
imental devices are well developed, laboratory systems are commercially avail-
able and dedicated X-ray facilities are available for special applications in several
international research centres. Data analysis techniques have been improved
substantially in the last two decades using numerical methods on computers.
(Computer programs are available from the authors.) Although the development
and the refinement of the technique will go on, X-ray small angle scattering is
now a well established standard technique for the investigation of non-periodic
structures with dimensions from about 10 A up to several thousand A.

The restriction to X-ray small angle scattering may appear arbitrary as
neutron small angle scattering is based on the same physical principles, and
investigations sometimes combine X-ray and neutron experiments. We confined
ourselves to this topic because of space limitations and because a book on
neutron scattering including a chapter on neutron small angle scattering was
published recently.*

The book is divided into three sections: Introduction, Method and Appli-
cations. The Introduction gives a short basic description of the method and is
directed to newcomers in the field. Detailed fundamental theoretical and exper-
imental aspects are covered in the second section as well as methods for data
evaluation and descriptions of special experimental techniques. Specific appli-
cations of the method to areas such as biological macromolecules, polymers
and anorganic substances, are described in the third section.

The chapters are written by different authors, all of them experts in their

*Neutron scattering. Jn “Treatise on Materials Science and Technology”, Vol. 15 (G.
Kostorz, ed.). Academic Press, New York.
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fields. We believe that the advantage of a clear presentation by specialists com-
pensates for the drawback of a certain heterogeneity introduced by a large
number of independent authors.

This book is aimed towards the level of graduate students, and a level of
understanding which should appeal to biologically oriented as well as polymer-
ically and physically oriented readers. So the book should offer an introduction
for the newcomers as well as an integral review of the state of the art for the
specialist. For this reason we have left out details in the theoretical and math-
ematical presentation and the chapters with applications are not necessarily to
be considered as reviews of the current literature, but are written from a peda-
gogical point of view. The large number of references in all chapters allows the
reader to follow up on the details.

We are grateful to the authors for their generous cooperation. We are also
indebted to Ms. I. Ames and E. Lehner for their indefatigable and patient help
in typing the manuscripts, Ms. B. Muller for the excellent preparation of many
figures and to the staff of Academic Press for their continued help and co-
operation.

O. Glatter and O. Kratky
October 1981
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1
A Survey

0. KRATKY

Institut fiir Rontgenfeinstrukturforschung der Osterreichischen Akademie der
Wissenschaften und des Forschungszentrums Graz, Graz, Austria

X-ray small angle analysis is a technique for studying structural features of
colloidal size. Any scattering process is characterized by a reciprocity law,
which gives an inverse relationship between particle size and scattering angle.
Colloidal dimensions (between tens and several thousand A) are enormously
large compared to the X-ray wavelength (e.g. the most frequently used CuK,-
line of 1,54 A) which makes the angular range of observable scattering corre-
spondingly small. Since X-rays are primarily scattered by electrons, we can
summarize the situation as follows: X-ray small angle scattering is always
observed, and only observed, when electron density inhomogeneities of colloidal
size exist in the sample. We are permitted to confine our considerations to
coherent scattering, since incoherent scattering is negligibly weak at very small
angles.

The scattering process can then be visualized as follows: the electrons resonate
with the frequency of the X-rays passing through the objects and emit coherent
secondary waves, which interfere with each other. We shall discuss this pheno-
menon in the context of a simple example.

Figure 1a shows a spherical particle. We assume that waves scattered from the
two indicated points to an angle 20 have a path difference of 1X. It is easy to
see that, if we include the scattering from all points (electrons), the super-
position of waves with all possible phases will essentially lead to no scattering
in the direction 26 as a result of destructive interference. If we consider smaller
Scattering angles, the phase differences become smaller and the waves will begin
to enforce one another. The scattering maximum will obviously be observed in
the direction of zero scattering angle, where all waves are exactly in phase.

3



4 0. KRATKY

(a)

FIG. 1

—_— 20

FIG. 2

Qualitatively, the observable scattering curve will be like curve 1, Fig. 2. Let us
apply the above picture to a much larger sphere (for the same wavelength): here,
path differences of 1A will already occur at smaller scattering angles (Fig. 1b)
resulting in a narrower scattering curve (curve 2, Fig. 2). Finally for particles
that are huge compared to the wavelength, X-ray small angle scattering occurs.

Following the above train of thought, it is possible to compute the expected
scattering curve for any particle shape (Chapters 2,4, 5). For anisotropic particles,
one has to calculate the scattering for every orientation and average the results.
One of the different techniques for calculating scattering curves involves the
distance distribution function of the electrons p(r), which is obtained from
geometrical considerations. The scattering curve I is obtained from p(r) by
Fourier inversion

sin hr 4 sin @

1) = 4n [ p() 0)
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One understands that the small angle scattering curve will remain essentially
unaffected if we shift electrons within a particle by distances which are small
compared to the overall particle dimension. Thus, particles with relatively
small inhomogeneities can be treated as if they had a uniform electron density
distribution.

So far, we have implicitly assumed that particles are surrounded by a vacuum,
in which case the scattered amplitude is proportional to the number of moles
of electrons per unit volume, the electron density p. For dissolved particles, only
the electron density difference p, —p; (p, = electron density of solute, p; =
electron density of solvent) is effective. The scattered amplitude is thus propor-
tional to p, — p;, the scattered intensity to (p, — py)?. If p, and p, are equal,
the X-ray beam does not “see” the particles, since the solution represents a
homogeneous electron density continuum, and waves scattered into any
direction will be extinguished. The term “electron density” is frequently used
for the electron density difference, the “contrast™.

So far, we have talked about X-ray small angle scattering of an isolated
particle, the “particulate scattering”, postulated by Guinier in 1938. For homo-
disperse, sufficiently dilute solutions, the scattered intensities of the individual
particles simply add up. The problem of the small angle analysis consists in
deducing size, shape, mass and possibly even the electron density distribution
from the scattering curve. One has to find a model particle, which is “equi-
valent in scattering” with the particle in solution, i.e. whose scattering curve
agrees within experimental error with the experimental curve. The more accurate
the latter was determined and the larger its angular range, the more challenging
and the more rewarding is the problem of the analysis. This is particularly true
if not only the main maximum of the scattering curve, but also subsidiary
maxima, were observed, These subsidiary maxima are frequently very weak,
but their position, height and shape are sensitive to rather small changes in the
model. A complete solution to the problem of finding a model equivalent in
scattering frequently requires several cycles of approximation, sometimes even
mere trial and error,

It is, however, possible to obtain a number of parameters directly from the
scattering curve, without the ambiguity of trial and error. These parameters
form themselves an important body of information, and they are the basis for
any overall analysis.

The first of these parameters is the radius of gyration, R. Formally, it corre-
sponds to the radius of inertia in mechanics; it is the root-mean square of the
distances of all electrons from their centre of gravity. Therefore, R is an intuitive
measure for the spacial extension of the particle. In a plot of In 7 vs (20)*
(Guinier plot), R is proportional to the square root of the slope of the tangent
in the limit 26 - 0.

If the particles are roddike, multiplication of the scattering curve by 29
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yields the so-called cross-section factor, i.e. a curve, which depends only on size,
shape and electron density distribution within the cross-section. A Guinier plot
of this curve yields the radius of gyration of the cross-section R,,.

For plate-like particles, multiplication by (26)? yields the thickness factor,
which depends only on the particle thickness and on the electron density distri-
bution perpendicular to the particle plane. The radius of gyration of the thick-
ness R; is obtained analogous to R and R,. For particles with uniform electron
density distribution, the thickness ¢ follows from R according to 1 = R,4/12.

The volume V, another directly obtainable parameter, can be calculated for
particles with sufficiently homogeneous electron density distribution according to

3.2
V=K-— fo K = 7\4—" )
L. 1(20) - (20)? - d(20) K

(a = distance sample — detector).

The integral in the denominator is known as “invariant”: for a given concen-
tration, its value does not depend on the degree of dispersion. Since the zero
intensity increases with the particle weight — and hence also with the volume —
it is plausible that the formula for the volume involves the quotient of Iy and
the invariant.

If one knows the “absolute intensity”, i.e. the quotient of scattering intensity
and primary intensity, one can obtain the particle molecular weight, or — for
polydisperse solutions — its weight average.

The small angle technique can thus be used to “weigh”™ particles. The
derivation of the underlying quantitative relationship is based on the fact that
the scattering of one electron amounts to 7,9 x 10726 times the primary intensity
per square centimetre, when measured at a distance of 1 cm from the scattering
electron. A unique feature of the small angle method is the fact that it also
allows a determination of the mass per unit length for rod-like particles and the
mass per unit area for plate-like particles.

Finally, one might also quote the distance distribution function p(r) among
the directly obtainable parameters. It is obtained by Fourier inversion of the
scattering curve

1 pe .
p(r) = 5 J.o I(h) « hr = sin hr + dh (3)

We return to the problem of the particleshape determination. We have
outlined how theoretical scattering curves can be computed for a model of
given shape. In fact, there exists an “atlas™ of scattering curves for numerous
three-axial bodies, such as ellipsoids, parallelepipeds, ellyptic cylinders, hollow
cylinders, hollow spheres etc. Using this atlas and the above parameters, it was
possible to obtain reasonable approximations of size and shape especially of
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biological macromolecules. A large number of proteins (Chapter 8), nucleic
acids, viruses and ribosomes (Chapter 9) have been investigated with great
success.

A particularly nice example is hemocyanine. Good agreement between the
theoretical and the experimental curve was obtained up to the third subsidiary
maximum for a hollow cylinder model. The relative intensities of the main
maximum and the first subsidiary maximum were found to depend strongly on
the ratio of inner and outer radii, which offered a sensitive criterion for the
determination of this radial ratio.

For more complex particle shapes, it is occasionally convenient to approxi-
mate the particle with a large number of small, closely packed spheres. These
spheres do not in any way correspond to molecular subunits; they are just a
remedy to approximate any complicated particle shape.

The availability of electronic computers also permits the computation of
models consisting of several three-axial bodies; i.e. for the IgG-globuline a
model consisting of three elliptic cylinders was found to be equivalent in scat-
tering with the real molecule.

Instead of comparing experimental and theoretical scattering curves, one
can also compare theoretical and experimental (using equation 3) p(r) functions.
Though both approaches are completely equivalent, the latter has the advantage
of being closer to human intuition. The new “indirect Fourier transformation
method” allows the computation of p(r) functions even for non-ideal experi-
mental situations, In fact, in recent years it has become more and more common
to publish the distance distribution function together with the scattering curve.
Among other advantages, the p(r) function allows the immediate deduction of
one important particle parameter: the r-value at which p(r) drops to zero indi-
cates the largest particle dimension.

The relative arrangement of subunits can be deduced from labelling experi-
ments: heavy atoms or groups of heavy atoms are attached to each subunit and
the scattering curves of labelled and unlabelled material are determined. The
distances between the labels can then be deduced from certain difference curves.
The power of this technique is greatly increased when neutrons are used instead
of X-rays, since, for neutron scattering, labelling simply consists of exchanging
hydrogen by deuterium.

The next step of refinement of the small angle model consists of including
pronounced electron density inhomogeneity within the particle. This is particu-
larly desirable when a particle consists of several chemical constituents. Two
different approaches to that problem have so far been used. If the particles are,
to a good approximation, spherically symmetrical (like, for example, many
lipoproteins; Chapter 10), the radial electron density distribution is obtained
directly by Fourier inversion of the scattering amplitude. The amplitude is the
square root of the intensity, which immediately leads to the problem of assigning
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the correct sign. This phase problem, which can be a major obstacle in X-ray
crystallography, is usually of minor significance in small angle research: since
the sign can only change when the scattering curve drops to zero, the number
of possible sign combinations is limited. The problem can be avoided totally
in small angle scattering with the recently developed convolution square root
technique which allows the computation of the radial electron density from the
distance distribution function (see Chapter 4). Knowing the electron density
of the chemical constituents, the radial electron density permits a deduction
of the relative arrangement of the different constituents.

Analogous possibilities exist for a deduction of the radial electron density
distribution of long, cylindrically symmetric particles as well as for the electron
density perpendicular to the plane of lamellar shaped molecules, provided the
lamella is known to have mirror symmetry.

A second technique for determining electron density inhomogeneities is
called the ‘“phase-contrast technique”. Its applicability is independent of the
presence of any particle symmetry. The basic idea is as follows: if one modifies
the electron density of the solvent, the contrast between particle and solvent
is altered and hence the scattering changes. If one succeeds in finding a solvent
whose electron density is identical to the electron density of one of the particle
constituents, the scattering from this constituent vanishes and one obtains
information about the rest of the molecule. Thus, if a virus particle consisting
of protein shell and nucleic acid core is under investigation and the solvent
electron density is adjusted to the protein, the X-ray beam “sees” only the
nucleic acid. Although it is not possible to “blank out” completely the electron
density of a constituent, contrast variation yields valuable information: if the
scattering curve is known from at least three solvents with different electron
densities, the scattering curve can be split into three terms (Chapter 6). One
term corresponds to the scattering function of a hypothetical particle with the
overall shape of the physical molecule, but with uniform electron density. It
can thus be compared to theoretical scattering functions of homogeneous
bodies and yields the shape of the particle envelope. The second term corre-
sponds to the scattering which one would observe if the particle were investi-
gated in a solvent whose electron density equals the mean particle density.
This term yields, thus, information about the inhomogeneities of the electron
density distribution within the particle. The third term is a mixed function,
which will not be discussed here.

The main problem with the phase contrast consists of finding suitable sol-
vents with sufficiently different electron densities, which do not alter the
structure of the dissolved molecules. Neutron scattering, however, is superior
in this respect, because it allows large variations of the contrast by simple
exchange of H,O by H,0-D,0 mixtures.

The study of changes in the particle structure upon external influences
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(change of temperature, change of solvents, reactions with other molecules,
irradiation with high-energy radiation etc.) is an important field of application
of small angle scattering (Chapter 8). We mention a characteristic example:
second-order phase transitions occur in the lipid core of human high-density
lipoproteins upon raising the temperature. The critical temperature is different
for samples of different human beings and appears to correlate with a dispo-
sition for atherosclerosis. Many studies exist about conformational changes,
e.g. reaction of apoenzyme with coenzyme to form the holoenzyme, reactions
between antibodies and haptenes, etc.

In the field of biological macromolecules, one is usually concerned with
homodisperse solutions of molecules with identical shape, whose structures
do not change with time. A completely different situation exists with natural
and synthetic chain molecules in solution (Chapters 11, Section I, and 12),
which have a rapidly changing coil structure. Apart from the molecular weight
(or, for polydisperse systems, its weight average), application of the small
angle technique yields a useful parameter characteristic for the degree of coiling:
the “persistence length”. Its value follows directly from a characteristic bend
in an 7(20) - (26)* vs 20 plot. The determination of the persistence length by
small angle scattering is superior to other methods, which all involve indirect
deductions from the hydrodynamic length and the radius of gyration, assuming
a Gaussian coil. This assumption is not inherent in the small angle determination;
the X-ray beam acts as a fine probe which averages the degree of coiling over
the whole of the chain molecule. Even branched molecules can be analysed
with the small angle scattering technique, especially if “comb-like” branching
exists (i.e. many short branches along the main chain).

The small angle scattering method has also proven useful for the charac-
terization of dissolved particles, which are not biological macromolecules.
Examples are oligomers of dyes (Chapter 15, Section V), where a knowledge
of degree and geometry of association is important for an understanding of the
process of textile dyeing. From the experimental point of view, it is noteworthy
that for low concentrations monomers, with molecular weights often of only a
few hundred, exist in solution, which still yield an interpretable small angle
scattering curve. Bearing in mind that, on the other hand, particles with mole-
cular weights of many millions are frequently studied with small angle scattering,
one appreciates the enormous range of applicability of this technique. This
flexibility is simply achieved by adjusting the width of the X-ray beam entering
into the small angle camera and by modifying the registration time for the
scattered radiation (Chapters 3 and 7). Other examples for organic molecules
in solution, which were extensively studied with small angle scattering, are
soap micelles and micelles in the gall fluid (Chapter 15, Sections I-1V).

So far, we have discussed exclusively the study of colloidal particles in
solution. However, there exist numerous successful applications of the small
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angle scattering technique for the characterization of solids, e.g. natural and
synthetic high polymers, metals, alloys, glasses and colloidal powders.

It should be remembered that natural fibres, in particular cellulose, as well
as colloidal coal, were at the cradle of X-ray small angle scattering research.
They were the first substances whose small angle scattering was observed in
the late 1920s and early 1930s. Already then, this phenomenon was recognized
as originating from the colloidal structure of these substances.

In 1938, Guinier proposed his concept of particulate scattering. At the same
time it was recognized, that for densely packed colloidal particles (like the
micelles of solid highpolymers) interparticle interference effects are dominating
and that the scattering is, therefore, similar to what one expects from a distorted
crystal lattice. This analogy is suggested by the fact that the ribbon-shaped
micelles are stacked to form closely-packed parcels (Chapter 11, Section II). This
lamellar-stack model has since found widespread acceptance, not only for the
solid cellulose, but also for synthetic high-polymers (Chapter 13). It did, how-
ever, take some time before it was generally accepted that there is a qualitative
and principal difference between diluted and dense systems. In fact, it took
several unsuccessful attempts to apply the idea of particle scattering (with full
neglect of interparticle interference effects) to densely packed systems, whose
volume of hollow spaces is only about 1% of the total volume, i.e. whose state
is infinitely far removed from that of a dilute solution.

In fact, a number of years later, the technique of ““air-swelling” was invented,
which involved a loosening-up of densely packed fibres by several times their
original volume, with concomitant destruction of the parallel ordering of adjacent
micelles. This technique permitted the application of the particle-scattering
concept to cellulose and silk since, as it was generally recognized, the inter-
particle interference effects became progressively less severe the more aniso-
tropic the particles are. It is gratifying that the dimensions obtained from the
dense system (using the lamellar stack model) show good agreement with the
ones obtained from the air-swollen samples (using the particle scattering con-
cept). Differences between the results of the two approaches can be interpreted
in terms of changes in the structure of the micellae upon transition between
the two states.

Different approaches have been successful for the application of small angle
scattering to the study of metals, alloys, glasses and ceramics (Chapter 14). If one
phase occurs finely dispersed and dilute among the rest of the substance — in
this sense hollow spaces can also be considered a phase — the concept of particle
scattering can be applied, provided the electron contrast between this phase and
the surrounding matrix is sufficiently stronger than electron density variations
within the matrix. Compared to monodisperse solutions, however, the situation
is usually complicated by the fact that the influences of particle anisotropy and
of polydispersity on the scattering curve cannot be unequivocally separated.

1. ASURVEY 1

Both deviations from a monodisperse system of spheres have the effect of
flattening-out the scattering curve, as indicated in Fig. 2, curve 3. This consti-
tutes a fundamental problem in small angle research. Thus, the scattering of a
homodisperse system of ellipsoids of a given axial ratio can always be approxi-
mated in terms of a distribution of spheres of different radii. Fortunately, this
ambiguity is not always as severe as it could be. Just for inorganic systems
practically only spherical particles need to be considered.

High concentrations of inhomogeneities reduce the intensity at low scattering
angles. We mention the case of silica spheres dispersed in water (“Ludox™):
for volume fractions between 1% and 16%, the diameter determined using the
Guinier-plot for single particle scattering changed from 210 A to 148 A. How-
ever, even small contributions of interparticle interferences can be easily recog-
nized from the p(r) function.

There exists a fundamentally different approach, which is not based on any
model assumption, and which is, therefore, always applicable: the direct deter-
mination of parameters following the general scattering theory (Chapters 2,4, 5).

The first of these parameters is the mean square fluctuation of electron
density, which is obtained from

a* [ 120)- (20 d(20) .

A 2 _ . = — j.N? = —3
(4p) Y ko= —ieN? = 8341070 (4)

For a two-phase system with known electron density difference (Ap),, between
the two phases, the volume fractions wy and wy =1 —w,; of the two phases

follow from -
(AP)2 = Wp* Wz(AP)%,z ()

Porod’s law (Chapter 2) states that the tail-end of the scattering curve follows

the course
K

— 6

@y ©
where K is related to the inner surface (in A% per A? of the sample) by the
equation

I

-’
0y = %o Q)
The quantities (Ap)? and OfV are powerful aids for the analysis. They
constitute an invaluable check for any proposed model. It might be appended
that equations 4-7 were also frequently used for the analysis of natural and
synthetic highpolymers in the solid state.
Naturally, a basic requirement for the significance of any analysis is a sound
scattering experiment. Today, the small angle scattering technique can be
regarded as a precision method with a high experimental standard (Chapter 3).
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Available well developed instruments are reliable and, to a large extent, auto-
matic, which also makes the small angle scattering technique a useful tool for
routine work, for which any laboratory can be equipped with commercially
available instruments at reasonable costs.

For extreme demands, on the other hand, there exist highly specialized
and powerful instruments in some laboratories around the world. Here, espec-
ially, those laboratories must be mentioned which make use of the radiation
of synchrotrons and storage rings (e.g. DESY Hamburg, Lure Orsay, Stanford,
Nowosibirsk), where the radiation intensity exceeds that of a conventional
X-ray generator by about three orders of magnitude. Obviously, only tech-
nologically very advanced countries or communities are in a position to offer
such facilities for the purpose of diffraction experiments. With these tools
the possibility of performing time-resolving studies can be realized, i.e. the
observation of transient states in macromolecular assemblies as, for example,
in the contraction-relaxation cycle of muscle.

As already mentioned above, many problems, particularly the determin-
ation of density inhomogeneities within a particle can only be solved by neutron
diffraction. Also, only a few centres exist around the world, for this purpose,
which are equipped for such studies. At present the Institut Max von Laue —
Paul Langevin in Grenoble, France, and the Brookhaven National Laboratory,
Upton, USA, for example, have sufficiently powerful high neutron flux reactors.

With regard to special registration devices the two-dimensional position
sensitive detector should be mentioned. Such instruments exist at the above
mentioned centres as well as at the National Center for Small Angle Scattering
Research at the Oak Ridge National Laboratory, USA, and allow, in combin-
ation with cameras that are several metres long, the measurement of small
angle scattering patterns from oriented systems in very short times. Research
centres having such equipment at their disposal generally offer the possibility
for visiting scientists to use their facilities during short periods for specific
problems where preliminary studies by conventional techniques have prepared
the ground.

In the following section books and review papers concerning small angle
scattering are listed.
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1. Principles of Diffraction
A. Scattering

Structure analysis may be based on the diffraction of X-rays, electrons and
neutrons. Although in the following treatment we will be concerned with X-rays
only, all the results may be applied to electron and neutron diffraction as well,
with only slight modifications.

Diffraction is produced by the interference of waves scattered by an object.
In the case of X-rays striking the object, every electron becomes the source of
a scattered wave. As the energy of an X-ray photon is very large compared with
the binding energy of an atom, all electrons will behave as if they were free
(except for very heavy atoms, which play no role in small angle scattering).
Accordingly, all secondary waves are of the same intensity, by the well known
Thomson formula

. 1 1+4+cos?29
1L,(0) = I,-790-10 26'?"—2"—

(1)
where [, is the primary intensity, @ the distance from the object to the point
of registration. The numerical factor is the square of the so-called classical
electron radius (e*/mc?). The intensity depends only slightly on the scattering
angle 26 by the polarization factor, which is practically equal to 1 for the small
angles in all problems of interest here. As the electron scattering intensity /.
applies to all formulae to follow, it will be omitted for brevity: this means that
the amplitude and the intensity of a secondary wave scattered by a single elec-
tron will be taken of magnitude 1. In case the absolute intensity is needed, /,
should be calculated again.

B. Interference

The scattered waves are coherent. Though incoherent (Compton-) scattering
will occur too, it can be neglected as only small angles are involved in our
problems. Coherence means that the amplitudes are added, and the intensity
is then given by the absolute square of the resulting amplitude. The amplitudes
are of equal magnitude (= 1 by our convention), and differ only by their phase
¢, which depends on the position of the electron in space. It is convenient to
represent a single secondary wave by the complex form: e’%. The phase ¢ is
2m/\ times the difference between the optical path and some arbitrary reference
point.

The calculation of ¢ is illustrated by Fig. 1. Let us denote the direction of
the incident beam by the unit vector sy, and of the scattered beam by s. The
path difference of a point P, specified by the vector r, against the origin 0 is then
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FIG. 1. Scattering by two point centres.

directly seen to be —r(s — s,). The phase is therefore ¢ = — (2n/A)r(s — so). This
takes the form ¢ = —hr. From Fig. 1 it is seen that (s —s,) lies symmetrically
with respect to the incident and the scattered beam, and that its magnitude is
2sin 6. Here 6 means half the scattering angle, according to the glancing angle
used in crystallography. Consequently, the vector A has the same direction and

. the magnitude: & = (4n/\)sin @ (where sin & may be replaced by 6 in small

angle scattering).

The vector product hr means that only the component of 7 in & is relevant
for the phase. So all points in a plane perpendicular to & will have the same
phase. Diffraction might, therefore, be regarded as a “reflection” by a set of
planes (dashed lines in Fig. 1). This concept, though of great importance in
crystallography, will not be used much here.

It could now be possible to obtain the resulting amplitude by summing up
all secondary waves, represented by a term e~ each. But, considering the
enormous number of electrons and the fact that a single electron cannot be
exactly localized, it will be convenient to introduce the concept of electron
density first. This may be defined as the number of electrons per unit volume
(cm®), and then be denoted by p(r). A volume element dV at position r will
then contain p(r)dV electrons. So summation can be replaced by integration
over the whole volume V irradiated by the incident beam:

iy = [[[ av-pey e @
Mathematically speaking, the amplitude F of diffraction in a certain direction
(specified by k) is the Fourier transform of the electron density distribution

within the object. From Eqn (2) the best way of deriving the intensity /(k)
as the absolute square is by using the conjugate complex F*:

1) = Fr* = [[[[[[ avi-ava oo e (3)

This is a Fourier integral again, involving only the relative distance (r, —r,) for
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every pair of points. It is convenient, therefore, to carry out the double inte-
gration in (3) in two different steps: first to summarize all pairs with equal
relative distance, and then to integrate over all relative distances, including the
phase factor.

The first step is the mathematical operation of convolution square or auto-
correlation, and is defined by

auto-correlation p(r) = _HJ. dVyp(ry)e(r2)

with: r = (r,—r,) = constant 4

The resulting function, well known as the Patterson function and widely used
in crystallography, has the following properties: every electron pair with relative
distance r can be represented by a point in a fictious C-space, say. The density
of these points is then given by p2(r). As every pair is counted twice with r and
—r, it follows that the distribution in the C-space must show a centre of sym-
metry, whether this be the case in ordinary space or not.

The second step consists of an integration over the C-space:

1y = [[[ av-52¢)-e ™ (5)

This is a Fourier transform again. So the intensity distribution inl & or reciprocal
space is uniquely determined by the structure of the object, as expressed by
p*(r). Conversely, the latter can be obtained from I(h) by the inverse Fourier
transform:

) = (515)3 JI] ancanyan, 1wy~ e ©)

One quite general conclusion can be drawn from (5) and (6): there is a reci-
procity between ordinary and reciprocal space. As they are connected by the
phase hr only, the result will be the same, when r is enlarged and A is diminished
by the same factor. So large particles will give a diffraction pattern concentrated
at small angles.

C. Small Angle Scattering

Especially with particles or inhomogeneities of colloidal dimensions, and with a
usual wavelength of about 1A, the pattern is limited to a range of one or two
degrees. This is the typical domain of small angle scattering, which will now be
discussed in more detail. Furthermore, let us introduce two restrictions which
are met by the majority of cases, and will greatly simplify the problem:

(1) The system is statistically isotropic. It makes no difference here whether
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this is a property of the structure itself or a consequence of some change
in time (rotation of particles or the like).

(2) There exists no long range order. This means that there is no correlation
between two points separated widely enough.

From Restriction (1) it follows that the distribution p? in C-space depends
only on the magnitude r of the distance, though this will not be true for p(r)
in ordinary space. Likewise, the phase factor e ™" can be replaced by its average,
taken over all directions of r. This is expressed by the fundamental formula
of Debye (1915):

; in hr
(e-ihry — S
e P, (™)
by means of which (5) is reduced to the form
in hr
Iy = | amr?drp20)
®) = [ 4 ar5i) = ®)

According to Restriction (2), at large » the respective electron densities should
become independent, and might be replaced by the mean value 5. The auto-
correlation, as defined by (4), must so tend towards a constant value V5?2, while
the initial value p(0) is ¥p? (the maximum, of course). So the structure is
represented by the finite region only, where p? deviates from the final value,
as the latter obviously contains no information. This is in accordance with the
fact that a constant value throughout the total volume (always assumed to be
very large) acts like a blank object and cannot make any contribution to the
diffraction pattern (but for extremely small angles not accessible to experi-
ments). It is convenient, therefore, to drop this “background” from the
beginning, and to use the electron density fluctuation n = p — p instead of the

density p itself. The auto-correlation (4) is then redefined as
— 2

W= (p—p) =B —Vp* = Vo) ®)

D. Correlation Function

By a slight change of notation we have introduced in (9) the so-called correlation
function +y(r) (Debye and Bueche, 1949). Comparing (4) and (9) we can inter-
pret y(r) as the average of the product of two fluctuations at a distance r:

v(r) = &lry)n(r,)> with r = |r;—r,| = constant (10)

also with the property ¥(0) = n?, and y = 0 for larger 7. According to Restriction
(2) we assume that the final value of 0 is reached within a finite range (of
colloidal dimension). Equation (8) now takes the form (Debye and Bueche,
1949)
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= sin hr
Ih) = VL 4qr? dr - y(r) . (11)

This is the most general formula for the diffraction of systems obeying Restric-
tions (1) and (2). ¥(r) is found by the inverse Fourier transform

sin hr
hr

1 oo
|4 = — | h*dh-I(h 12
1) = 57 [ W dhe 1) (12)
Both formulae are of outstanding importance for all problems to follow. But
let us first draw some general conclusions: obviously (11) and (12) take a par-
ticularly simple form for A =0 and r=0, as then the Debye factor has the
value 1. So we have

10) = V | 4marv@) (13)

Vy(0) = —2% [ e an-ray = vi? (14)

The meaning of Eqn (13) requires some consideration. For, at h = 0 exactly,
all secondary waves are in phase, so that we might expect I(0) to be equal to
the square of the total number of electrons in the irradiated volume V. This
cannot be observed, however. Equation (13) may be interpreted in the sense
that each electron of the volume ¥ acts in coherence only with a surrounding
region, as defined by y(r). So I(0) should be regarded as an extrapolated value,
rather than as a measurable quantity.

Formula (14) shows that the integral of the intensity over the reciprocal
space is directly related to the mean square fluctuation of electron density,
irrespective of special features of the structure. If, for example, parts of the sys-
tem were shifted or deformed, the diffraction pattemn might be altered con-
siderably, but the integral in Eqn (14) must remain invariant.

“invariant” Q = f: K2 dh - I(h) (15)

By virtue of this property it will play an important role later.

11. Particle Scattering. Special Cases
A. Single Particles

Let us now consider a dilute solution of identical particles of constant electron
density p, embedded in a medium of constant po (solvent). So only the difference
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Ap =(p —po) will be relevant for diffraction. If the particles are separated
from each other widely enough, it is plausible to assume that they will make
independent contributions to the diffracted intensity, so that only one single
particle (denoted by the index 1) needs to be considered. This will be discussed
in more detail later in Section 5, and will be found to be true.

The simplest case is that of particles showing spherical symmetry. As all
orientations in space are equivalent, then it suffices to calculate the amplitude,
and then to square it to get the intensity. This procedure is well known for the
calculations of atomic structure factors. For the special case of a sphere (radius
R, volume V) of uniform density the result has been given by Rayleigh (1911):

sin ARy — hRy cos AR, |

sphere I,(h) = (Ap)*V?|3 (iRy)’ (16)

Though derived for a very special case only, Eqn (16) shows (Fig. 2) all the
typical features common to the diffraction patterns produced by not too
anisometric particles. The central peak is easily understood: all secondary waves
are in phase at & =0, and are simply added. The amplitude must, therefore,
be equal to the number (An,) of excess electrons, as only the contrast to the
surrounding is effective. This must be true for any particle, irrespective of size

and shape: )
single particle I;(0) = (Ap)*V? = (An,)? 17)

For particles of non-spherical shape the intensity can only be calculated by
numerical methods. This is greatly facilitated by some special symmetry of
the particle. We shall consider such cases first. A centre of symmetry, which we
will assume for the following examples, simplifies the calculation of the ampli-
tude, as this becomes real for any orientation. The phase factor e can then
be replaced by cos hr:

orientated particle F,(h) = (Ap) I dV-coshr; I,(h) = F* (18)

. T hR,
2 4 6 8

FIG. 2. Scattering intensity of a sphere.
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where the integral should be extended over the volume of the particle. The
observable intensity is then found by taking the average of F” over all orien-
tations. Incidentally, that amounts to the same as keeping the particle fixed and
rotating h with respect to it.

It should be noted, in this context, that a Fourier integral like Eqn (18)
always results in an oscillating function, alternating between positive and
negative values, which must, therefore, become zero at certain points. (This
could not be so if there were no centre of symmetry.) But this characteristic
feature will be more or less blurred by taking the average, so only for spherical
particles, or nearly spherical, the oscillating slope is to be expected to play a
marked role.

Ellipsoids provide a particularly simple case. As was pointed out by Hosemann
(1939), for every orientation of an ellipsoid the amplitude will be the same as
for a sphere with a certain radius. This follows from the fact that only the com-
ponent of 7 in k is relevant for the phase, so the shifting of a plane perpendicular
to h will not alter the amplitude. Now, it is well known that in this way an
affine relation between an ellipsoid and a sphere can be established. If we
define the orientation by the angles «, 8, v between the half-axes 4, b, c and h,
respectively, the equivalent radius R, is found to be

ellipsoid R2 = a®cos®a + b? cos® B + ¢? cos® y (19)

This should be substituted into Eqn (16), leaving V constant, and then the
average formed, which can only be done by numerical integration.

Another simple type is provided by rectangular parallelepipedons. The
amplitude for an oriented particle can then be split into three factors, corre-
sponding to one axis each. Let us designate the axes by 2a, 2b, 2c; the respective
Cartesian coordinates by x, y, z; the direction of h relative to these axes by
the unit vector (a, B, ), where a, §, v stand for the cosines of the respective
angles. The phase Ar is then expressed by h(xa + 8 + z7), so that the exponen-
tial phase factor can be separated into three factors of the form e™"**, ... . The
decisive point here is that the volume integral can also be split into three single
integrals along the axes. This is made possible by the fact that the boundary
conditions for x, y, z are independent of each other. (It was not possible for
ellipsoids, for example.) For one axis we have

+a ) +a sin haa
dx- —ihxa __ dx- hx = - 20
L, xee ~[~a x+ cos (hxa) (sin hao:) (20)
The total amplitude for a fixed orientation is then
. ) i (h
parallelepipedon F,(h) = (An,) sin (ha) sin (155) sin () (21)

haa hbp hcy

The oscillating character, as mentioned before, is shown clearly here.
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To obtain the intensity, the square F> must be averaged again over all orien-
tations. It should be borne in mind, however, that this cannot be done for the
three factors separately, for «, § and y are not independent variables.

Cylinders can be treated in a similar way by separating the axis and the cross-
section. This will be of importance in the discussion of very unisometric par-
ticles, and will be considered in more detail later in Section IV.

Many intensity functions have been calculated by these or similar methods,
e.g. for ellipsoids (Guinier, 1939; Shull and Roess, 1947; Porod, 1948; Schmidt
and Hight, 1959; Mittelbach and Porod, 1962), for parallelepipedons (Porod,
1948; Mittelbach and Porod, 1951a) and for cylinders (Porod, 1948; Foumet,
1951; Mittelbach and Porod, 1951b). The results are all similar to the function
in Eqn (16) for a sphere, particularly in the central range, showing marked
differences only in the final slope at larger angles, as is to be expected.

B. Guinier Approximation

From the above it might be concluded that for the central part a universal
approximation for all particles must exist. This was first given by Guinier (1939)

Li(h) = (Bn,)? RT3 (22)

with the “radius of gyration” R as the only parameter. It is defined as the mean
square distance from the centre of gravity: R =+/r?, where the role of “mass”
is played by the electrons, of course.

The Guinier formula can be derived as follows: let us consider the amplitude
of an orientated particle (18). For the central part it will suffice to expand
cos hr into a power series: 1 — (hr)?/2+ ... . The volume integral then turns
into V(1 —(hr)*/2 + . ..), where the average is taken with h fixed and r varying
over the volume. In Cartesian coordinates we have (just as before for parallel-
epipedons) hr = h(xa + yB + z7). In squaring and averaging, the mixed products
like xy cancel, if the centre of mass is taken as the origin. So we have at last
((Br)?) = h*(x%? + y2B% + 2%2).

This should be substituted into the power series, the amplitude then squared
to give the intensity and finally the average taken over all orientations

Li(h) = (Ap) VX1 —h¥x%? + y32 + 22920 + . .)
")
= (Any)- (1—h2%+...)

making use of (o) = (§2) = (y?) = 1/3, and of: > = (x> + y? + 2?).

The power series (23) is in accordance with the Guinier approximation up
to the h?-term, irrespective of particle shape and symmetry. The higher terms
with then involve higher “moments”, 7%, 7%, ..., which must depend on the

¥
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special features of the particle and cannot, therefore, in general agree with the
Guinier function. With a sphere, for example, expansion of Eqn (16) shows
that the h*-term of the rigorous function is less than that of the approximation
(22), with R =+/3/5°R,, but a sphere is an extreme case in this respect. Any
deviation from spherical shape, keeping R constant, must involve larger dis-
tances, and so increase the higher terms. There are many shapes, consequently,
which fit Eqn (22) up to the h*-term. With still greater anisometry the rigorous
function will exceed the approximation. A size distribution must work in the
same sense.

On the whole, the Guinier formula holds surprisingly well in the majority
of cases. Only for very anisometric particles it should be replaced by another
approximation, which will be discussed later in Section V.

I11. Particle Scattering. General Treatment
A. Correlation Function and Chord Distribution

The general case is best treated by the use of the correlation function (c.f.) y(r),
as defined in Eqn (10). As the electron density difference (Ap) is always assumed
to be constant here, it is convenient to separate it in the form

¥r) = (Bp) 1o(r); Y0(0) = 15 7(r=D) = 0 (24)

where 7,(r) is only related to the geometry of the particle. As always a largest
diameter D, say, must exist; yo will vanish for r >D. The normalized c.f. v,
(formerly termed “characteristic function”, Porod, 1951) can be given a more
intuitive meaning (Porod, 1948). Let us imagine the particle shifted by a vector
r, as shown in Fig. 3. It is clearly seen, then, that the volume ¥ in common with
the particle and its “ghost” just contains all points that give a contribution
to yo(r). Accordingly, we need only average over all directions of r, withr = |r|

being kept constant N
Yo(r) = VDIV (25)

‘ " / /l'

N S

FIG. 3. Particle and “Ghost”.
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The argument can be further enhanced. If we draw lines with narrow and
equal spacing (Fig. 3), the particle is cut into rods of varying length /, which
might be termed “chord” (or formerly “intersection length). The group of
chords for all directions may be considered using a distribution function G(!)
(Guinier and Fournet, 1955; Porod, 1965), such that G(/) d/ is the probability
that a chord chosen at random is of length between ! and (I + dl). Now it is
seen from Fig. 3 that for each chord with /> r a piece (I —r) is contained in
V(r). Therefore, this can be replaced in (25) by an integral extended over the
chord distribution

1 D _ D
T00) = 7 [Ta-newyas wit T = fo 1GQ)di (26)
By differentiation we find

dyo) _ 1P & 1
il TP eqe0 @

Thus the chord distribution G(?) is, in a mathematical sense, equivalent to the
correlation function ,(r) and is, therefore, equally well suited to represent a
particle with respect to its diffraction pattern. Many attempts have been made
to develop this concept further (Porod, 1965; Méring and Tchoubar, 1968;
Tchoubar and Méring, 1969; Luzzati er al., 1976; Schmidt, 1967; Porod,
1965b). There are serious difficulties, however, in treating more complicated
cases, such as hollow or composite particles, or densely packed systems. Here
it may suffice to cite only one very simple example, which follows from clear
geometry

. 1 -
sphere G(I) = —; [ =%Ro; () = 1—2

3(1) L LY (o
2R}’ 2\p) *2lp) @B
The intensity 7, (k) is, according to Eqn (11),

sin hr

D
L) = (o [ dnr drqo) =0 @9)
where ,(r) can be obtained by the inverse Fourier transform
2.1 I sin hr
B0 Vo1o(r) = 55 |, W ah-1) = (30)

B. Central Part

Instead of calcglating for special types of particles, let us instead consider what
general conclusions can be drawn from the above formulae. It is reasonable to
treat the central part and the final slope of I,(k) separately.
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First, it is obvious that I,(0) must be equal to the square of the number of
excess electrons again, as already stated before. This result is now directly seen
from Eqn (29), as the integral over the normalized c.f. yo(r) must, from its
definition, equal the volume

1,(0) = (8p)’V? = (An,)*

because o
Jo dnrtdreyo(r) = V 31

For practical applications, it must be borne in mind that the intensity, as
measured in experiments, still involves the number of particles and the electron
scattering factor (1). These factors can be accounted for, however, by the use
of the “invariant”, already mentioned in connection with Eqn (14). Here it
takes the form

0, = [ Wdn-n = 2 @0V 32)

which in combination with Eqn (31) gives
w?-1,(0)/Q, = V (33)

As the intensity is present here in the enumerator as well as in the denominator,
all additional factors will cancel, and the arbitrary unit of intensity as well.
So the volume can be determined from the diffraction pattern alone, no other
data being required. In the case of a mixture of different particles being present,
some mean value is obtained, of course. It is a weighted average rather than a
number average, with a statistical weight of V(Ap)® for each particle, as is
evident from the additive form of the invariant.

Next the central part of I(#) will be examined. This is best done by developing
the Debye factor into a power series: 1 —h%r?/3!+ h*r%/5!..., and then
integrating the terms separately. It is convenient to split the factor V, whereby

the integrals become averages 72, r2, . . . with yo(r) as a weight function. So we
have hr?: htr?
Ii(h) = (Ane)* {1 30 Ter T
with |
R
"= 7 L 4ar? dryo(N)r'” (34)

The abstract definition of the coefficients of the norm r” can be given a more
intuitive meaning: if we choose at random two points, r; and r,, within the
particle, their difference (r; —r,) is by definition equal to r, as used in the
correlation function and in Eqn (34). The averages can now be formed without
the use of 7,(r), by varying the two points independently of each other within
the particle volume:
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I = (F=r)'; andespecially 12 = (F;=r;)* = ri+r} = 2R? (35)

Here it was assumed that the centre of mass was taken as a reference point
f'g_r ry_and rp, so that the linear averages must vanish. Further, the relation
ri=r;=R? with the radius of gyration is then obvious. Substituting in
Eqn (34) shows that there is agreement with the Guinier approximation again
up to the h?-term. This is, therefore, always valid for a certain range.

The argument can be refined by the direct calculation of the higher terms,
using Eqn (35) (Porod, 1948). This is more convenient than the method men-
tioned before using the amplitude. But, as the special cases are well known
and so can be treated with some ease, we shall not go further into the matter.

The radius of gyration and the volume are not the only parameters character-
izing size that can be obtained from the diffraction pattern. To see this, let us first
define a “correlation length” I, as the mean width of the correlation function.

Its meaning becomes more intuitive, when it is expressed in terms of the
chord distribution. This can be done by the use of relations (26) and (27).
After a short calculation (integration by parts) we have

correlation length [, = 2 .[:) vo()dr = I (36)

in other words, /. is the weight average of /. This is equivalent to the following
description: if lines are drawn through all points in all directions, the number
average of the chords so obtained is equal to /.

To find /, from the intensity function let us first form the integral [/,(k) hdh
which, by the way, corresponds to the total scattered intensity. Using (29)
this gives

[y nynan = @opv-an [ ve@)dr = @oyv-anl,  (37)

Again the invariant Q can be used to eliminate (Ap)*V as well as all additional
factors:

o= n [ n@hdnig, (38)

C. Final Slope

V, R and I, may be termed “integral” parameters (Porod, 1965a), as they are
characteristic of the overall dimensions of the particle. Correspondingly, they
are mainly related to the central part of I(h). If we now proceed to discuss the
final slope, we may expect this to depend chiefly on the fine structure of the
particle, which is expressed by the behaviour of y,(r) at small 7. It is convenient,
therefore, to expand v,(r) into a power series
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Yo(r) = L—ar+br*+cr’... witha = i (39

where the coefficients a, b, ¢, ... may be termed “differential” parameters
(Porod, 1965a). The first of these is immediately related to the chord distri-
bution by Eqn (27). On the other hand, it seems plausible that it must depend
on the surface S of the particle in some way. For, only a shell of thickness 7
can make a negative contribution to y,(r), since it is only here that part of
the neighbouring points, at a distance r, are outside.

To put the argument in a quantitative form, let us resume the derivation of
Yo, as expressed in Eqn (25) and illustrated by Fig. 3. For small r the common
volume V differs from V itself only by the shift of the surface. The contribution
of a surface element dS to this shell is dS-r cos 9, if we specify the angle
between r and the surface normal by 9. Now, instead of integrating over the
surface, let us first take the average of this infinitesimal contribution for all
directions of r. This means only averaging |cos 3| = 1/2. Further it must be
considered that only the part of r directed inwards makes a contribution, which
results in a second factor 1/2. Each surface element will, therefore, diminish
by 1/4 dS-rin the average, which gives 1/4 Sr for the total surface. So we have

. S S 1
V(ry = V—585r; 7yo(r) = I—ZFr; a= =7 (40)
We can now substitute into (29) to obtain approximately
D r sin hAr
2 2 24r-l1 —=
Ii(h) = (Bp)'V J.o dnr® dr (l i +.. ) i (41)

This may be integrated by parts, which will not be done here in full detail. Let
us remark only that a series of negative powers in k is obtained and, due to the
upper limit, also pseudo-periodic terms, which fall off very rapidly and can only
be of importance with nearly spherical particles, as explained before. Bearing
in mind that only an approximation to the final slope is intended here, we
shall retain only the most important term,

8r 1
L) > oYV = (Bo)* 58 42)

This fourth power law, derived independently by Debye et al., (1957), and by
Porod (1951), has proved to hold much better than might be assumed from
the rather involved derivation. In fact, it is valid not only for single particles,
but also for densely packed systems and for non-particulate structures (with a
slight modification of the factor only), provided that there exists a well defined
internal surface. This seems plausible, for as only the structure near the surface
is responsible for the final slope of I(h), it should not be influenced by the
large-scale properties of the particles or their mutual arrangement. Further, it
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is obvious from Eqn (42) that the contributions of different particles will
simply be added, so that the asymptotic value of /() must be proportional
to the total interface S.

The practical application requires the measurements of absolute intensity.
To avoid this, the invariant Q may be used:

S
ihn)e ~ T E m-lim I(h) h*/Q (43)
So the specific surface can be determined from the diffraction pattern alone,
without using additional data,

The discussion of the final slope of /(i) may be further refined by taking
into account higher terms in the series (39). As the problem is rather involved,
and as only in special cases with extreme experimental precision does it seem
possible to make practical use of it, the question may be outlined here only
qualitatively.

First, it can be shown that the parameter » must vanish in most cases. This
is best seen from relation (27), which implies 5 = G(0)/21. So b is closely related
to the initial value of the chord distribution. Now it can be understood, without
much mathematics, that the latter will be zero in general. For, a chord of /=0
can only be obtained by a line cutting the particle nearly tangentially, Then,
at a curved surface, / must increase with the second power of the distance from
the surface. Consequently, an interval d/ corresponds to a bundle of lines which
are small to the second order. This implies that G(0) = 0. The argument breaks
down, however, in case of the particle having edges or comers, for then the
bundle width varies linearly with /, and a finite value of G(0) and of b is obtained.
So it might be said that the parameter b is, in a certain sense, a measure of
“angularity” (Porod, 1965a). Unfortunately, there is no satisfactory way of
determining it from the intensity function, although suggestions could be made
(Porod, 1965a). The reason is that in the integral of Eqn (41) monotonous
terms are only produced by odd powers of r, while the even powers only give
rise to oscillating terms,

The third parameter ¢ could be shown to be positive for smooth particles
(Kirste, 1962). It is related to the curvature of the surface, as was to be expected.
If edges or corners are present in the particle, these cause a negative contribution
to ¢. For purely angular bodies like a cube, for example, ¢ should be negative,
therefore.

The preceding statements will best be illustrated by three typical examples.
Let us first consider a sphere as representative of a smooth particle. The corre-
lation function is already known Eqn (28). The lack of b and the positive sign
of ¢ are seen directly. Further, it is a special property of a sphere that no higher
terms occur in vyy(r). This may be interpreted as a sign that, beyond a constant
curvature, no other structural details of the surface exist.
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Our second example could be a rectangular parallelepipedon with axes
A <B<C, say. Using Eqn (25) vo(r) is easily obtained considering that the
common volume V is a rectangular parallelepipedon again. The average over
all directions is easily performed

1,1 1 1
parallelepipedon Yo(r) = l—i(—+—+—)+ 2 2( + ] + L )

\a B ¢l 3" \aB BC ca
r,} 1id only for r< A (44)
o1 .

an Agc’ ‘Heomw

Here the typical features are the occurrence of the r?-term and the negative
sign of the r-term. The lack of higher terms may be attributed again to the
especially simple shape of the body.

Thirdly, let us consider the Guinier approximation under the assumption
that it is the exact intensity function of some system. It is evident that it cannot
be produced by particles in a proper sense, because the h~%Jaw is not valid here.
Further, it is a well known result of Fourier theory that the transform of a
Gauss-function is a Gauss-function again. So must be 7,(r), therefore. Being
an even function, all odd parameters a, c, ... are zero, which is in agreement
with the lack of a surface. On the other hand, the even parameter b, though
present, is negative and cannot, therefore, represent the ““angularity” of a
particle. Rather it indicates an overall fluctuation of electron density without
a sharp boundary.

The above examples show that the correlation function is very sensitive to
structural details and could give valuable information, if it were exactly known.
Now, it is possible, in principle at least, to calculate yo(r) from I(h) by the
Fourier transform of Eqn (30) or, more generally, Eqn (12). But this requires
an exact knowledge of the intensity, and especially of its final slope. So the
practical application of the preceding relations will depend on the experimental
accuracy available,

1V. Extremely Anisometric and Composite Particles
A. Rod-like Particles

Very long-stretched or very flat particles show some peculiar features in their
diffraction patterns (Shull and Roess, 1947; Debye et al., 1957), which need
special consideration. Let us first regard a rod of length L and of cross-section
A. In this case, as was already shown in Section Il, the amplitude can be
separated into two factors belonging to L and A, respectively. This is done by
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FIG. 4. Vectors in a rod-like particle.

introducing the corresponding components: r =z + r,, as shown in Fig. 4. The
axial factor is already known from Eqgn (20). So we have for the rod
sin hLy/[2 ;

Fi(h) = (Ap)°L —FL?%_' ” dA-e e (45)
where v means the cosine of the angle between h and the axis. Now let us
assume that L is very much larger than the diameter D of the cross-section. The
consequence is that the axial factor drops to zero very rapidly. It will be negli-
gible, except for those orientations where 7 is very small, to compensate for
the largeness of L. This is equivalent to saying that the rod makes a contri-
bution to the diffraction only when it lies nearly perpendicular to 4. The essen-
tial point is that in these positions the cross-sectional factor remains nearly
unaltered with a slight skipping of the axis. So the two factors can be regarded
as nearly independent, and the averages of their square can be formed separately.
The axial factor gives

w7 [sinkLy2) . m
D =17, (———-—Mw2 dy = Ly 46)

where the upper limit of the integral is put at e instead of correctly at 1, which
makes no serious fault. The remaining factor, when squared and averaged, gives
a function I,(#), which is related only to the cross-section. For the rod:

m

Iih) = L .h < L(h) é4n

The factor 1/ is characteristic of rod-like particles (Kratky and Porod, 1962;
Porod, 1948). It is easily accounted for by multiplying the intensity by & to
give the cross-section function /.. Equation (47) can only be an approximation,
which becomes unvalid at very small angles. But, with L very large, Eqn (CY))
breaks down, where the region becomes so small that it is no longer accessible
to experiment. This will be assumed for the following.

For the calculation of I (k) it must be bome in mind that A should be
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regarded as lying in the plane of the crosssection. So the problem is two-
dimensional only but otherwise quite similar to the calculation of 1,(h) for a
whole particle. This means simply that

1) = (2o [[[[ ddydy-etCerre (48)

where (Ap) may be regarded as the number of excess electrons per unit area
and unit length. Let us further introduce the distance vector r. = (re1 —re)
an a corresponding correlation function v.(rc) = (Ap)*Yeo(r). The average of
the phase factor, however, must be altered against Eqn (7), since the variation
is in two dimensions now, instead of three

(e7ihrey = Jo(hr,) (49)

where J, means the Bessel-function of the zero order, which shows qualitatively
a behaviour similar to the Debye function of Eqn (7). So we have

L) = Qo)A [, 2mr dreyeo(r) Jo(hr) (50)

The index ¢ has here been dropped at 7, as the meaning is clear by the context.

The calculation is greatly simplified, of course, in case of a circular cross-
section. For then the amplitude is not dependent on rotation and needs only
to be squared

Jl(hRo)); 1)

F, = (&p) j: 2mr dr- Jo(hr) = (Ap)-A-(Z IR

I(h) = FZ()

The expression in brackets, containing the Bessel functon of the first order,
has the value 1 for 2 =0 and exhibits a slope similar to an ordinary intensity
function. This similarity holds for other shapes of the cross-section, too.

It is convenient, and in most cases also sufficient, to have an approximate
formula, for the central part at least, like that of Guinier for particles. This
can be obtained easily. Since the argument is essentially the same as that used
before, we can be brief. Thé only difference from Eqn (34) is that the power
series Jo(hr) =1—h?r*[4 ... has the coefficient 1/4 instead of 1/6 at the
second term. With this slight modification we get

L) = (Ap)’A%e™™ R RY = f2 (52)

The radius of gyration R, is defined in the same way as R, but for the cross-section
only. For a circle, for example, R, = Ro/n/2.

The approximation of Eqn (52) cannot hold for the final slope, of course.
There the h~%-law is valid for the whole particle. Since now a factor ~h™' has
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been split off, it follows that the final slope of I,(%) must be ~ A3, The deter-
mination of the specific surface according to Eqns (42) and (43) remains valid
as well; only the meaning of S/V can here be replaced by the circumference
per area, as the length L cancels out.

Incidentally, the assumption of a rigid rod with a straight axis was not essen-
tial for the preceding considerations. Quite similar results hold also for a flexible
thread with sufficiently soft bending. This can be qualitatively understood as
follows. Any part of the thread that happens to lie fairly perpendicular to A,
ie. in a “plane of reflection”, will' contribute to diffraction like a rod, while
other strongly tilted parts are negligible in this respect. In fact, a continuously
bending thread behaves very much like a chain of rods linked together. As this
topic is of particular interest for macromolecules in solution, it will be dealt
with in a separate chapter (by Kirste).

B. Flat Particles

Let us now consider a flat particle, whether stiff or slightly bending, with a finite
thickness 7T and extremely large in two dimensions. By analogy to the case of
a rod, we might expect that I(#) can now be separated into a factor ~ A2
(Kratky and Porod, 1948; Porod, 1948) and a “‘thickness-factor” I (k). That '
this is true can be seen by the same argument as was used for a rod. For a
certain orientation (cf. Fig. 4) the amplitude can again be written in the form
of Eqn (45). It must be borne in mind, however, that now T (instead of L) is
small; and the corresponding factor, therefore, is relevant for diffraction. The
second factor, on the contrary, contains now the extreme dimensions. Conse-
quently, it is negligible for nearly all orientations, except those where h is
nearly perpendicular to the plane, and its component in the plane, therefore, is
small enough to compensate for the largeness of r.. In this case the component
of h in z is practically equal to &, and the thickness-factor remains unaltered.
The square of the planar factor can therefore be averaged independently. In
the limiting case of a very large plane, all shapes give the same results: A+ 2m/h%
So we have finally

2
flat I,(h) = A-%-It(h)

. 2
sin hT/Z) (53)

ial L(h) = (Ap)*-T?
special L(h) = (8p)**T (hT/Z

where the special case means constant thickness 7 and constant (Ap). For
general cases it may be convenient to replace Eqn (53) by a Guinjer type
approximation. This follows directly from the power series of the special 1,(h),
with R, = \/z2 = T//12
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— J2m 2m2 .-h*R}
flat I,(h) = A |‘1205:.;0) T e (54)

The final slope of I;, however, must drop ~h~2, in order to obey the h™*law
for the whole particle. The specific surface, as obtained from this law, reduces
here simply to 1/T. So the one parameter T can be determined by three quite
different ways: from I,(0) ~ T?, from the slope of the central part (Eqn (54))
and from the final slope, as explained above. Since, further, the planar factor
~h~? is a very characteristic feature, it is clear that a homogeneous platelet is
particularly well characterized by its diffraction pattern.

There is yet another interesting point about platelets: I,(h) corresponds to
a one-dimensional Fourier transform. That means a great simplification in so
far as symmetry along T alone suffices to make the amplitude real. As com-
parison: in two or three dimensions circular or spherical symmetry is required
for that purpose. Now, a real amplitude can be obtained by simply taking the
square root of the intensity, and so a direct calculation of the structure along
T is possible.

To make this clear, let us assume some symmetrical electron density distri-
bution n(z) along T (difference to the surrounding). The amplitude F; is then

Fh) = j'*m @) coshz-dz; I, = F? (55)
t -2 i 1 t

and we have by the inverse Fourier transform
1 o
n@) = - L Fyh)coshz-dh;, F, = VI, (56)

This procedure breaks down in the most general case, whether there is some
grouping of different platelets or whether 7(z) lacks symmetry. A correlation
function should then be used. As this treatment seems sufficiently clear now,
it need not be further discussed.

C. Composite Particles

Finally we will consider another type that differs markedly from ordinary
particles: the question of composition particles, which are built up of simple
subparticles in a definite array. Let us first consider a fixed orientation of such
a composite particle. The positioning of the centres of mass of the subparticles
may be designated by ry, ra,...r; ...y, and their amplitudes (with respect

to each centre) by Fy, F,, ... Fj, ... Fy. The position of the subparticles
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are each accounted for by an additional phase factor ™ The total amplitude
then takes the form

N
composite F(h) =Y Fj(h)-e ™ (57)
]

and the intensity is again the absolute square of the amplitude, averaged over
all orientations:

I(h) = FF* = <Z Y ﬁ}F;-e—f"<’r’k>> (58)

The double sum contains NV terms with j = k, the phase factor consequently
vanishing. They represent, therefore, the intensity diffracted by the subparticles
alone. The remaining terms with j # k obviously represent the interference
between the subparticles, according to the relative distance rj, = (r; —ry). As
each pair is counted twice with r, = —rg;, only the real part remains. It must
be borne in mind here that in general each amplitude will have a phase too:
F; = |Fj|-¢"¥i. This is only zero for centrosymmetric particles. So we have, for
the general case,

N
I(h) = ) Ijn)+2- <Z#Z |Fjl 1Fy| cos (hr, +wk—cpj)> (59)
1 e

This expression is rather involved as, in general, each |F;| and y; is dependent
on orientation. We will restrict ourselves, therefore, to the special case of
spherical subparticles. All ¢; vanish then, and the F; become independent of
their orientation. Only the cosine needs to be averaged with the result of
Eqn (7), already known:

N sin hrj,

Iy = ¥ i)+ 2+ LY Filh)Fy(n) ——" (60)

1 i*k hrjg
This formula was first derived by Debye (1930) especially for molecules, the
F; then meaning the atomic structure factors. In fact, no restriction other than
centrosymmetry is necessary for subparticles. There is no need for constant
electron density or a defined boundary, for example. Even a hole could be
treated like a subparticle with negative F;.

With N very large, the interference terms must become predominant over
the single terms. At the same time the amplitudes become less critical, as the
subparticles then must necessarily be much smaller than the whole composite,
and so only the central part is involved. Equation (60) may be used, therefore,
to get a rough approximation for /() of some complicated particle by treating
it as a similar cluster of spheres, say. This works quite well, as was first shown
by Kratky (Kratky and Sekora, 1943; Kratky, 1947).
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V. The Influence of Dense Packing
A. The Radial Distribution Function

Only the scattering of single particles has been treated so far, though, of course,
a great number of them are always present. It was assumed that the intensities
are simply added to give the total diffraction pattern. This is true for a very
dilute solution, but with increasing concentration some interference effects
should be expected. This will be discussed now, in principle at least.

First, it is clear that the interference might even be very strong, if forces,
attractive or repulsive, are acting between the particles; this must lead to some
ordered mutual arrangement, and diffraction is very sensitive to order. But let
us exclude such forces and consider only the influence of pure geometry
(impenetrability of the particles). So it is the question of minimum interference
only, which must occur.

At first the simplest possible case will be considered, a system of volume V,
containing NV identical particles of spherical shape (diameter D). The whole
system can then be treated as one huge composite particle, the spheres represen-
ting the subparticles. Equation (60) may then be applied, with two modifi-
cations: first, because of the identity, I,(h) of the single sphere can be taken
as a common factor; secondly, as the mutual distances r;;, are now varying in
time, another average must be formed to cover all possible arrangements. For
this special system

Ih) = L(w)|N+2 <ZZ Mf—*—)] 61)

itk hrg

For large distances ry, the interference terms will cancel, if there is no long
range order; but in the short range some effect is to be expected, for there the
spheres cannot be arranged totally independently of each other. At least a
minimum distance equal to the diameter D must be kept.

The situation is best described by introducing a radial distribution function
P(r) as follows (Zernicke and Prins, 1927; Debye and Menke, 1930). On average
each sphere has the same surrounding (statistically speaking), which is also
isotropic. So it will suffice to regard only one central particle, and to ask that
the probability that another particle will be found in the volume element d} at
a distance r apart. The mean value of this probability is obviously (NV/V)dV;
any deviation from this may be accounted for by a factor P(r). From the above
it follows that in the range of impenetrability (r <D) P(r) = 0, and in the long
range (r large) P(r) = 1. If the latter were valid everywhere, the interference
terms would exactly cancel. So only the difference (P(r) — 1) is relevant for
diffraction. Equation (61) then takes the form
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sin hr
hr

Ith) = Nfl(h)ll + %L dnrt dr (P(r)— 1) (62)
The second term contains all interparticle interference. Its predominant part is
the “hole” of radius D, where (P(r) — 1) =— 1. The whole term should, there-
fore, be mainly negative and exhibit a steeper slope than the particle scattering,
the “hole™ necessarily being larger than the sphere. The effect must be to
decrease the intensity in the central part mainly, which results in a liquid-type
pattern. This was first shown by Debye (1915) by using the simplest possible
assumption that P(r) = 1 forr > D, so that the impenetrability alone isaccounted
for. The effect is essentially the same, even if some size distribution for the
spheres is assumed (Porod, 1952). Contrary to what is sometimes suggested,
with this model the interference cannot be destroyed by mere variation of size.
For all terms work in the same sense at small angles.

It should be noted that the model of Debye, though quite plausible, cannot
be correct in a strict sense. This is seen from the fact that for high concentra-
tions (volume fraction > 1/8) Eqn (62) leads to negative “intensities”, which
is impossible, of course, Many attempts have been made to derive some self-
consistent radial distribution function, either by geometry (Porod, 1952) or by
statistical thermodynamics (Guinier and Foumet, 1955); but no rigorous
solution can be given so far. Also it seems hopeless to extend Eqn (62) so as
to cover the case of non-spherical particles, too. The difficulty is that then
P(r) should be a function not only of r, but also of orientation. On the other
hand, the problem of other shapes must be considered somehow. There is
strong reason to believe that the role of interparticle interference is over-
emphasized by the assumption of spheres, since these can only contact at one
point and show a tendency to keep each other apart: any other shape would
allow closer packing. It is simply the relationship between neighbouring par-
ticles that matters most in our problems. So we will try another line of attack
as follows.

B. The Surrounding Function

Let us again assume a system of N particles, which now may be of any size
and shape, in a volume V. The amplitude and the intensity of the whole
grouping are then described by Eqns (57) and (58). The latter summation
can be written as a sum of “shares” [I(h)]; in the following way:

N

N .
Ih) = Y, M) U@ = < Fi+ Y F;-e"""f'*’> (63)

1

Each share can be regarded as the contribution of a certain particle, including
its interference with all other particles. Since all shares are defined in an
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analogous way, it suffices to consider in detail only one of them, arbitrarily
specified by the index 1. It entails no loss of generality if we regard the centre
of particle 1 as the reference point, i.e. if we put r, =0. Furthermore, it is
convenient to separate F; from the remaining sum, which then represents the
surrounding only:

UMY = 1i(h) + <F 1 k); Fy 8"’"”'> (64)

The second term can be given a more intuitive meaning: with particle one
kept fixed in space, the other ones will take all possible configurations in
time. The amplitude, averaged over these configurations, can then be inter-
preted as the Fourier transform of a “smeared out” surrounding, defined by
an averaged electron density difference Ap(r), which would be equal to (Ap),
if some point were always covered by a particle, and equal to 0, if this were
never the case. Of course, some intermediate value must result at every point,
according to the probability of covering. In the region far outside, especially,
because of the assumed lacking of long-range order, the final mean value p(Ap)
must be reached. Here ¢ means the volume fraction of the particles. For
diffraction only the deviation from that mean value matters. This may be
expressed by a “surrounding function” U,(r) (Porod, 1972), defined in the
following way

(8p)i(r) = (Ap)l¢ + (1 =)V ()] (65)

U, =1 represents certainty, and U, = 0 indifference of covering. So U, marks
that finite region outside particle one, where some ordering influence is felt.
When subtracting the constant value g, as explained above, care must be taken
to do this over the whole volume, that means inside particle one, too. Omitting
details, the final result is

share (1)) = (1= 9)1(h) + (1 —¢)(A0) <F1(h) [Jf av-vi e"’">
(66)

where the integral is to be extended over the volume outside only. The average
should be taken over all orientations of particle one, while the surrounding
remains fixed relative to the central particle.

Though U(r), like P(r), cannot be calculated in a rigorous way, some
qualitative conclusions can be drawn from Eqn (66). First, it is obvious that
the interference term can vanish, only if U(r) is zero everywhere. With spheres,
for example, this is clearly impossible, as there is only a point to point contact
at the boundary and, therefore, each sphere must be surrounded by a region
of negative U, but it would be possible for particles with a plane boundary,
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cubes for example. The argument shows that for interparticle interference shape
must play a much more important role than for particle scattering.

This is purely geometrical reasoning so far. For rather concentrated systems
the contact between particles should be regarded from a more physical point
of view, too. There may be some tendency for aggregation or separation, as is
assumed for irreversible and reversible colloids. An attempt at discussing this
problem may be outlined here only qualitatively (Porod, 1972). The physical
aspect can be described by a probability of contact, either higher or lower than
expected from pure geometry. The essential point is that such a probability
must be propagated from one particle to its neighbour and so forth. So the
first case (positive sequence) leads to a range of increased U(r) over several
particles and, consequently, to an increased intensity in the central part (gas-
type). The latter case (negative sequence), however, produces an oscillating
slope for U(r), beginning with negative values. On the whole the intensity is
decreased at small angles (liquid-type), as shown in Fig. 5. This was to be
expected anyway from pure geometry (impenetrability), and the effect is only
increased by an additional tendency for separation. On this occasion, it should
be stressed that the intensity due to interference cannot be attributed to some
real or fictitious “particle”, though, for a gas-type pattern this might well be
suggested. But in any case, the second term in Eqn (66) is such that an interpre-
tation in terms of particle scattering must fail.

C. Statistical Fluctuations
In the theory of diffraction it has been known for a long time, and has been

established for X-rays also by Zemicke and Prins (1927), that the intensity
at zero-angle is closely related to the statistical fluctuations of the system.

IA
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FIG. 5. Characteristic types of scattering functions. (a) gas-type; (b) particle scattering;
(c) liquid-type.
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In fact, if the system were ideally ordered, i.e. all particles placed on the sites
of a lattice, there would be no small angle scattering at all, as is well known from
the X-ray analysis of crystals. The assumption, made at the beginning, that
there is no long-range order, is therefore an essential one. It implies that the
system is governed by statistical laws only and must, therefore, show fluc-
tuations.

We might argue as follows, Let us imagine the total volume V as being sub-
divided by a regular lattice of n domains of equal size V/n each. In the average,
such a domain then contains N/n particles (all assumed to be equal for sim-
plicity). In fact, the number may be slightly different, N, say in the a-th
domain. As the uniform distribution is ineffective for diffraction, it is only
the difference (N, — N, ) that matters. Now let us regard scattering at an angle
as almost zero. It should be small enough so that all secondary waves within a
domain are in phase, and still large enough so that interference between the
domains is cancelled out. The amplitude of a single domain is then equal to
the number of excess electrons (N, — N, )(An,), and the total intensity is the
sum of the squares. All domains being equivalent in the average, this may be
written as JE——
1(0) = n+(Ne —No)** (An,)? (67)
The result cannot depend, of course, on the arbitrary choice of the domains.
This is best seen in the case of a stochastic system. The mean square fluctuation
is then equal to N,, and n-N, =N, the total number of particles. Upon sub-
stitution in Eqn (67), this is equivalent to pure particle scattering without
interference. Any deviation from it, as expressed by P(r) or U(r), indicates
consequently some tendency for ordered arrangement. The fluctuation can
then be smaller (liquid-type) or larger (gas-type) than with “normal” statistics.

While the relationship between the diffraction pattern and the typical par-
ticle parameters, such as volume and Guinier radius, then breaks down as a con-
sequence of interparticle interference, the final slope should still be related to
the specific surface. To examine this question it will be convenient to drop the
particle concept completely, and to regard the problem from a more general
point of view.

V1. Non-particulate Systems
A. Babinet Principle
Small-angle scattering is not bound to the presence of well defined particles.

The only condition is that there are heterogeneities of any kind in the colloidal
range. To show this in general, let us consider a model like that of Fig. 6. It
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FIG. 6. Non-particulate two-phase system (schematic).

\§

consists of two different substances (distinguished by indices 1 and 2) of con-
stant electron density each, and filling the fractions ¢, and g, of the total
volume V. Such a model should not be too far-fetched. It might represent
either some precipitate, where the individuality of particles is lost by close
contact, or some material containing many holes and pores, or other similar
structures.

First, we note that there is a well defined average electron density 5 and a
mean square fluctuation

P =it M =0 = (p1—p2) 192 (68)
The latter is directly related to the known “invariant” of the system:

invariant Q = L h*dh I(h) = Vn?- 20> = V(p, —p2)* - o192 20° (69)

Furthermore, it is always true that a constant p throughout the whole volume
is of no consequence and may, therefore, be subtracted. So the system is fully
equivalent to another one, where only region one is filled with matter of uni-
form electron density Ap = (p; — p;), region two being void, or vice versa.
Both cases must yield exactly the same diffraction pattern. This corresponds
to the well known principle of reciprocity of Babinet in optics. In the present
case it can be directly understood without using much mathematics. To that
purpose, let us imagine both regions to be of the same p, though materially
distinguishable. The amplitude of the whole system is then zero for any finite
angle, provided only that V is large enough. On the other hand, the amplitude
is the sum of the two amplitudes, produced by regions one and two. These
must, therefore, be equal but for the sign. If only one region is filled with
matter, its amplitude remains the same as before, while the other is zero.
Obviously the resulting intensity is the same in both cases.

From the Babinet principle, thus established, the cogent conclusion may
be drawn that all formulae for such a two-phase system must be symmetrical
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with respect to both regions as, for example, Eqns (68) and (69). At first sight,
this might seem to be in contradiction to all that has been said about particle
scattering so far. But a very dilute system is an extreme case, where some sim-
plifications are allowed. ¢, may be put equal to 1, and so it need not be
necessary to distinguish between p and p, and so on. In a rigorous treatment
there is not contradiction at all.

B. Correlation Function

The concept of the correlation function, as introduced in Section III for single
particles, must now be generalized for two-phase systems (Porod, 1951). Let
us again pick at random two points separated by a distance r. There are four
combinations possible, as each point may be found in “1” or in *2”. The
respective probabilities may be designated by Py, Pra, Pa1, P,,, with P, = Py,
because of the statistical isotropy. For a single point the probability of lying
in “1” or “2” is obviously ¢; or p,. But if the first point is known to be in
“1”, say, the probabilities for the second point are thereby altered. This can
be expressed as follows

Py = ¢1Py; Py = 0Py = 0Py Py = ¢aPn (70)

These probabilities cannot be independent. The sum Py, + Py, for example,
means the probability of finding the second point in “1”, irrespective of whether
the first one lies in “1” or “2”. Obviously this must be y,; and the analogous
result must hold for Py, + Py, = ¢,. So we have

Py+Pp =1, Py+Pp=1 (71)

As P,, and P,, are already related by Eqn (70), there remains only one unknown
function. To account for the mathematical symmetry, the result can be given
the following form

Py = o1+ 0270(r);  Pra(r) = 02— 0270(1);
Pyu(r) = ¢1—0170(r);  Pn() = 02+ ¢170(r);
P1;1(0) = P»(0) = 1; P(0) = Py (0) = 0, 7(0) = 15 (72)

It is now easy to see that the function 7y,(r), as introduced in Eqn (72) is
identical to the normalized correlation function of Eqn (24). To that purpose
let us go back to the original definition by Eqn (10) of 7(r). In the present
case only two values of the fluctuation n are possible: 7, = g,(Ap), and
n, = —¢,(Ap). Furthermore, only the four combination with the respective
probabilities, as specified by Eqns (70) and (72), need to be considered in
forming the average. So we have by elementary calculation

with
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() = ME)nx +r) = Py} + 2Py + Pl = 91902(80) y0(r)
(73)

where ,0,(Ap)?> =717 as shown in Eqn (68). The meaning of vo(r) is thus
established.

C. Intensity Function; Integral Parameters

The intensity for the whole system is now expressed by

sin hr
hr

1) = V-oupa(80) [ 4mr® dr-yo(r) (74)
In a mathematical sense, it only differs from particle scattering by one factor.
So we can expect the resulting function I(h) to show the same general features:
bell-shaped central part and final slope. In fact, no criterion can be given for
a diffraction pattern for deciding whether the system is particulate or non-
particulate.

The most general information that can be gained from the pattern is the
correlation function. By the inverse Fourier transform and using the invariant
@ to eliminate the factors we have

sin Ar
hr

l oo

Y0) = 5-[0 h? dh - I(h) (75)
But the meaning of y4(r), as discussed above, is now even less intuitive than for
a particle. In a certain sense it describes the averaged surrounding, as seen from
one arbitrary point, and marks the region with an excess probability of finding
the same matter as in the reference point. So the concepts of size and shape
may still be applied, though in a different sense than for particles.

At first a correlation volume v, can be defined by analogy to the particle
case. The relation to the intensity at zero-angle must obviously then be
maintained

10) = Vora(doyvs: v, = [ 4w dreye0) 76)

or, by the use of the invariant Q

Q
The latter formula is mathematically identical to Eqn (33), as given for a single
particle, but now it has a more general meaning, referring to any heterogeneity,

in whatever case. It might seem plausible to regard v, as a measure of the size
of the heterogeneities; but that would not make sense in every case. As an

I(0) an

Ve =
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example, for a densely packed system, as discussed in Section V, v, might
become very small and even zero (“liquid-type”), though large particles are
present. The reason for this apparent discrepancy is that yo(r) can take negative
values in the general case whilst this is impossible with single particles, of
course. The “volume” v, and I(0) should be better interpreted in terms of
statistical fluctuations (cf. Section V.C) rather than as a measure of “size”.

The loss of intuitiveness, as discussed above for v,, is valid for other integral
parameters, too, in non-particulate systems. The correlation length I, for
example, as defined in Eqn (36) and related to the intensity function by
Eqns (37) and (38) (the latter formula holds in full generality), is also affected
by negative values of 7o(r). The influence is not too serious, though, since
large distances are not over-estimated, as they are in »,. So /, might in most
cases still represent a fairly good measure of “size”.

The radius of gyration, on the contrary, is the most sensitive parameter of
all. By its definition, it is bound to the particle concept, and should be used
best for particle scattering only. With non-particulate systems it is liable to
become obsolete. This is obvious, for example, in a liquid-type pattern, and
can lead to misunderstanding in other cases, where the reasoning is not so
clearly seen. .

Finally, it should be noted that the concept of “shape” is still applicable
to non-particulate systems. It makes sense to distinguish (Porod, 1965) — in
a rough way at least — between globular, fibrillar and lamellar systems. The
criterion given for particles in Section IV, factor ~ k™" for fibrils and ~ ™ for
lamellae, remains valid. The reason is that the derivation given in Section IV,
though developed for particles, makes no direct use of the particle concept.
If the length of the fibrils, for example, can be regarded as infinite, it will make
no difference whether the ends are free or connected. The same is clearly true
for lamellae.

D. Final Slope; Internal Surface

The relationship between the final slope of the intensity function, the surface
of a particle and the mean chord was established in Section III. With a non-
particulate system the argument remains essentially valid still, as only the
surface structure is of importance in this context, independent of large scale
features. But a modification is needed in so far as the surface now belongs
equally well to region one and two. In other words, Babinet’s principle must
be obeyed.

To discuss this point, let us first consider the chord distribution. A line
crossing through the system (Fig. 6) will cut out alternating chords /, and /,
from the two regions. It is evident that the mean lengths must be in the pro-
portion of the respective volume fraction: I, :I, =y, :p,. From pure geometry,
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the relationship of Eqn (40) must apply to either of them, using ¥y, and Vg, for
the regions:
V V
L= 45@11 I, = 4'57@1
The connection with the first differential parameter, as shown in Eqn (40),
has to be modified, however, so that it becomes related to both regions in a
slymrnetrical way. Formally, this can be done by introducing a certain average
I of the mean chords /, and I, such that @ =1/I. The correct relationship
between these parameters must fulfill the condition that y,(r) is connected with
/ in the same way as the probability P, of Eqn (72) is with [,, and P,, with [,:

Yo(r) = 1=rll .. Pyu@r) = 1—gprll...; Pu() =1—¢rfl...
79
from which follows 7
_ ~ 14 1 1 1
I=1 =1 = - e = -+
192 21 49192 S’ or i L (80)

It is clear that in the limiting case of a dilute system [ becomes equal to [;. It
then entails no contradiction with Babinet’s principle, if the particles alone
are taken into account.

The connection with the final slope is essentially the same as derived in
Eqn (42) for particles.

=y
[—
2

Ih) > Veypp(Bp) =+ = (Bp)*- S (81)

T K
To get rid of the problem of absolute intensity it is again convenient to divide

by the invariant Q
1 S
= (82)

lim A% Ih)/Q =
mop, V

So while the formula is practically the same for particles and non-particulate
systems, a serious difficulty might arise in the latter case from the definition
of the surface S. In fact, we might imagine particles packed together so closely,
or a substance containing holes, pores or cleavages of so small a diameter, that
it seems doubtful whether they will make a contribution to the surface S or
not, If such a fine structure is present, we must expect the limiting value of
Eqn (82), instead of being constant, to increase with increasing angle.

Another point which makes a difference compared with particle scattering
should be mentioned. It seem obvious that in a non-particulate system no
largest distance D can be defined. The correlation function should drop to
zero asymptotically without a sharp end-point. Consequently, no oscillating
terms can appear in the final slope, these being a typical cutting-off effect of a
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Fourier integral. But this negative result cannot be regarded as a strict criterion,
since with particles of irregular shape or with a broad size distribution the
oscillations become negligible too.

VII. Non-uniform Electron Density
A. General Remarks

The assumption made throughout in the preceding sections of uniform electron
density will certainly hold, as a good approximation at least, in most cases.
Its importance lies in the fact that the structure can be treated as a geometrical
problem only. But there may be systems of such a marked heterogeneity that
the concept of uniform regions breaks down. The question is, first, when this
is the case and, secondly, what can then be done regarding the diffraction
pattern.

First, the natural heterogeneity due to the atomic structure is of no con-
sequence for small angle scattering. It can be replaced by a continuous electron
density, but this must be regarded as a function p(r) now, rather than a constant
as assumed so far. There remains a certain vagueness, it is true, as to the size
of region to be “smoothed”, but no general answer can be given in this respect.
The problem must be considered individually for special cases.

At any rate, if smoothing is allowed for p(r) the same is true for y(r) so that
the general formulae of Eqns (11) and (12) can be applied.

The evaluation of the diffraction pattern can then be made in two different
ways. First, one might choose a plausible model and try to approach the experi-
mental intensity function by successive alterations; or secondly, one can cal-
culate the correlation function by Eqn (12), and then try to interpret it by
some structure. Which method is best suited in a certain case is a question of
practical application and will be treated in later chapters. Here only two
problems of general importance will be considered in detail.

B. Heterogeneous Particles

The difference compared with homogeneous particles, as treated in Sections 11
and 111, can be caused by the internal structure and by solvatation. Both effects
should, in general, not invalidate the qualitative features of particle scattering;
but the quantitative relations need special consideration.

So the concepts of a particle volume and of a constant electron density
difference are no longer well defined and cannot, therefore, be used in the
formula of Eqn (17), but the alternative expression: /,(0) = (An,)? still remains
valid if the excess number of electrons (An,) is redefined in a correct way. This
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is necessary, since only the electron number n, of the free particle and the
electron density p, of the solvent are exactly defined. As, on the other hand,
the volume is uncertain, and there may be some additional change of electron
number by solvatation, it seems not clear @ priori how many electrons should
be subtracted. The question is settled by the following argument. Let us imagine
a certain volume V of the solvent and separately a particle of electron number
n.. If we now put the particle into the solvent, the whole volume will be
increased by a certain amount, ?; say, (identical with the partial molecular
volume in thermodynamics). Now it is clear that the change of the total volume
by itself is irrelevant for diffraction, but near the particle the volume v| has
been displaced and with it the number v} p, of electrons. So we have

(Bnp) = ng—vipo; 1;(0) = (An)’ (83)

Another characteristic feature of heterogeneous particles is the way diffraction
depends on the electron density p, of the solvent. If the density p of the particle
were constant, a variation in p, would produce only a change of absolute inten-
sity, the function I(#) remaining unaltered; but if p(r) itself varies within the
particle, the difference [p(r) —p,] is a function where the relative values are
markedly altered by a variation of py, and so is the intensity function I(h).
This is a complication which, on the other hand, can be used to obtain additional
information by investigating the same particles in different solvents. (This will
be treated in more detail in Chapter 7).

C. Correlation Function and Final Slope

Let us now consider a non-particulate system containing fluctuations n of
electron density about a mean value p, which is, of course, irrelevant for
scattering. Under the assumption of statistical isotropy, it suffices to regard
the fluctuations along a line, n(x) say. According to what was said in Section A,
this function can be supposed to be “smooth”, though it may be of a quite
irregular nature. So it can be developed in a power series in order to calculate
the correlation function for short distances r

an\ | 1(d3%n
n(x) + (5;)3- +5(§)r? . l> (84)

In forming the average the second term must vanish, as positive and negative
values will necessarily cancel in the long run. The third term must be negative,
as near a maximum the second derivative is negative, and positive near a mini-
mum. Applying integration by parts we finally have

Yr) = M) nlx +r) = <ﬂ(x)

—_1fon) ,
’T(f)'_—n*—za—x re. .. (85)
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The behaviour of y(r) is distinctly different from that which was found for
particles in Section III. The lack of the linear term is obviously due to the fact
that in the present case there is no sharp boundary. Consequently, also the
characteristic A %-slope cannot appear. On the other hand, the ri-term in
Eqn (85) seems to be typical of fluctuating systems. For smooth particles it
was found to be zero, and to have a positive value for angular bodies.

The above calculation cannot account for a sharp boundary between two
regions, which would mean a sudden jump of n(x). This can be treated, however,
as an additional effect, causing a linear term in y(r) and the normal h™*-slope
due to the interface. The arguments remains valid also for the case of several
interfaces S; with different “jumps” (Ap);. So Eqn (81) is easily generalized to

1) > - 3 500 (56)

It should be stressed that only the differences (Ap); at each boundary play a
role for the final slope, while the fluctuations within the region are ineffective.
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In the current section we assume that the reader is roughly familiar with the
function of commercially available equipment (e.g. X-ray generators, X-ray
tubes, cameras etc.), necessary for scattering experiments. Details will be dis-
cussed in the current section and in Chapters 3.11 and 3.I11I, as well as in Chapter
7.

I. X-ray Laboratory

The X-ray laboratory has to conform to the following requirements:

(1) Provision for complete darkness: some of the adjustment operations of the
small angle camera require darkness and good adaption of the eye.

(2) No strong vibrations, caused for example by road traffic, since vibrations
may affect the alignment of the camera.

(3) Air conditioning: if the camera is not mechanically connected to the X-ray
tube, thermal effects may cause a movement of the focus relative to the
camera, leading to intensity instabilities. In this case, the ambient tempera-
ture should be kept constant within * 2°C. If, however, the front end of
the camera is suspended at the top of the X-ray tube (see Section II1.C2),
no special measures for the control of the room temperature are required.

Humidity should neither be extremely high nor extremely low; very
low humidity causes electrostatic charging, high humidity may lead to
electric flashovers.

(4) Sufficient water supply: direct use of tap water is permissible, if its tempera-
ture fluctuates less than * 2°C. Larger temperature fluctuations cause
intolerable intensity fluctuations. A closed cooling water cycle is advan-
tageous: it maintains constant water temperatures and avoids calcification
of the anode. Calcerous deposits at the anode reduce its thermal conduc-
tivity and decrease the cooling effect. Obviously, one has to use a closed
cooling water system if the public water supply cannot provide enough
water.

I1. X-ray Source and Camera Set-up
A. Choice of Anode Material

For the vast majority of applications, an X-ray tube with a copper anode has
been used in the past; the wavelength of its characteristic radiation (CuK,-line)
is 1,54 A.

The use of longer wavelength radiation would obviously spread the scattering
curve over a larger angle, therefore permitting higher resolution. This possibility
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FIG. 1. Dependence of scattered intensity I on the sample thickness 7.

however, is only very rarely used due to the sharp increase in absorption with
increasing wavelength: increased absorption decreases the optimum sample
thickness and the maximum scattered intensity. The intensity / scattered at
small angles is proportional to ¢ e™#* (¢ being thickness of the sample: y, absorp-
tion coefficient); this expression has its maximum at topt = 1/u. If the material
to be investigated has a very high absorption coefficient, it is often difficult to
obtain sufficiently thin samples. Figure 1, which shows the dependence of the
scattered intensity / on the sample thickness ¢ (expressed as a multiple of the
optimum thickness 1/u), demonstrates the decrease in intensity for a thickness
exceeding 1/u. In favourable cases the absorption may permit the use of
chromium K,-radiation (A = 2,29 A) but they will usually disqualify longer
wavelengths.

At this point, however, the work of Herglotz™® has to be mentioned: he
describes an open X-ray tube combined with a pinhole camera to overcome
some of the difficulties of Al-radiation (A = 8,34 A). The interior of the X-ray
tube (which is permanently connected to a vacuum pump) is separated from the
interior of the camera only by a 6 um thick Al-foil. Since the tube is essentially
“open”, frequent removal of the tungsten deposit at the anode is easy. Excellent

measurements on 0,01 mm thick polymer foils were performed on this instru-
ment.
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TABLE 1
topt [Nm]
CuKgq MoKy

Be 3584 18041
C (Graphite) 966 7111
Mg 149 1398
Al 76,2 718
Fe 4,1 33,0
Ni 24,6 24,1
Cu 21,2 22,0
Zn 23,2 253
Pb 3,8 74
H,0 976 8307
C,HsOH 1964 15249
Si0, (Quartz) 109,5 1018
Laboratory glass 76,7 647
(CH=CH),, (Lupolen R) 2547 17975

We do not know of any other work using such long wavelength radiation for
small angle scattering, but the possibility should be kept in mind. Although the
Herglotz camera employs pinhole collimation, there is no obvious reason why
the same set-up should not work with slit collimation, too.

Usually it is not necessary to cope with the above problems, since the resolu-
tion obtainable with copper radiation (see Chapter 11, Section II) is sufficient.
In fact, there are several cases, to be discussed in the following, where it can be
favourable to use shorter wavelengths,

(1) Table 1 shows that inorganic materials often have a prohibitively small
optimum sample thickness for copper radiation. Occasionally, for samples
containing light metals, molybdenum radiation (AK, = 0,71 A) may be suitable.
With its excitation voltage of 20 kV, molybdenum tubes can be conveniently
run under usual operating conditions (50-60 kV). However, samples containing
high concentrations of heavy metals have an optimum thickness which is pro-
hibitively small, even for molybdenum radiation. Tungsten radiation (AKq =
0,21 A) would be suitable, but for sufficient intensity the tube voltage has to
be at least 100 kV, which requires special equipment. It should be feasible,
however, to run a tungsten tube with “normal” voltages (e.g. 60 kV) and use a
fraction of the white radiation for the scattering experiment. Sufficient mono-
chromatization could be achieved with any of the standard techniques (balanced
filters, monochromator, pulse height discriminator). The resolution of available
small angle cameras is in most cases sufficient to cope with the decrease in
scattering angles. Little practical experience is so far available, especially with
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tungsten radiation, but experiments would be very desirable, as they could
extend the small angle technique to the study of strongly absorbing metals,
which were so far practically excluded.

(2) Shorter wavelengths “compress™ the scattering curve in a correspondingly
smaller angular range. This can be useful when the maximum attainable angle
of a given goniometer is too small to record enough of the scattering curve
with copper radiation. In such a case, the use of a shorter wavelength has the
added advantage that a correction for the angle-dependence of the absorption
(as a result of different pathlengths in the sample) becomes small or even negli-
gible.

(3) The advantage of weaker absorption results is an increase in maximum
intensity with the optimum thickness (i.e. with 1/u). However, to obtain the
same resolution with shorter wavelengths would require correspondingly
narrower entrance slits and counter slits, which in turn decreases the intensity.
It is, however, not possible to give a general rule as to which radiation yields
highest scattered intensity, because the X-ray flux obtainable from tubes with
different anode materials is difficult to predict.

(4) The optimum thickness of macromolecular solutions in water or organic
solvents is about 10 mm for molybdenum radiation (Table 1). Sample cuvettes
can therefore be equipped with flat glass windows of 0,12 mm thickness. Such
cuvettes have a uniform and precisely measurable thickness. On the other hand,
the same samples have an optimum thickness around 1 mm for copper radiation,
which dictates the use of Mark capillaries, which usually are of rather irregular
shape with a poorly defined average thickness. This advantage of molybdenum
radiation, however, does not come into effect if there is not enough sample
available to fill the 10 mm cuvettes, which is frequently the case when biological
macromolecules are of interest.

(5) Tungsten deposits at the anode, which accumulate with time, have a
smaller effect on the primary intensity for short wavelength radiation than for
longer wavelength.

B. Installation of X-ray Tube and Camera

We assume that an X-ray tube with line focus and four windows is used. First,
one has to decide whether the tube should be mounted vertically or horizontally.
Better mechanical stability and access to all four windows favour the vertical
position, but several types of small angle cameras (e.g. the Rigaku Denki gonio-
meter) require a horizontal tube. In the following discussion we assume that the
X-ray tube is mounted vertically, as this appears to be preferred by most workers.

Another basic decision concerns the type of window which is to be used for
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the camera. Let us assume the size of the focus is 10 X 1 mm and the X-ray
path has the usual 6° inclination against the horizontal plane of the focus. In
this case the projection of the focus into the plane perpendicular to this X-ray
path is a line with dimensions 10 x 0,1 mm on the “long” side of the focus.
On its “narrow” side, the focus appears as a radiating square of dimensions
1 x 1 mm. One frequently talks about working “at the line focus” or *“at the
square focus”, respectively.

Naturally, a “slit camera” (i.e. a camera whose collimation system is designed
for a primary beam whose cross-section has the shape of a long and narrow
rectangle) should be placed in front of the line focus, whereas a “pinhole”
camera (i.e. one which utilizes a circular primary beam cross-section) should be
placed at the square focus. If the tube is mounted vertically, the longer dimen-
sion of the slit is referred to as its “length”, the smaller dimension is called
“width”. It should be noted that, in the case of the X-ray tube being mounted
horizontally and working at the line focus the larger dimension of the slit runs
vertically, and is correspondingly called “slit height ™ instead of “slit lengzh . In
both cases (i.e. vertical and horizontal X-ray tube), the smaller dimension of the
slit is referred to as the “‘slit width™,

C. X-ray Tubes with Rotating Anode

Several manufacturers offer high-power generators whose X-ray tubes could not be
cooled in the conventional way without local over-heating at the focus due to
the high electron flux. To circumvent this difficulty, the focus is generated at
the surface of a water-cooled cylinder, which rotates at high angular velocity
to dissipate the heat over the whole of its circumference. Such X-ray sources
have a very high water consumption, which is roughly proportional to their
power.

The power of commercially available instruments of this type ranges from
6 kW to 60 kW, which is about 3-30 times larger than for sealed tubes. The high
primary intensity allows correspondingly shorter exposures, which is particularly
useful for the study of time-resolved processes or of unstable materials. More-
over, many investigations involving low electron density contrast, or high
dilutions, demand high power sources.

High power X-ray generators run with the usual voltages (40-50 kV) and
produce the same radiation as conventional sources with a higher primary
intensity. This requires exceptional care in the design of radiation shields, i.e.
sufficient thickness of the absorption material and absolute avoidance of small
leaks.
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II1. Small Angle Cameras

A. General

Pinhole cameras, i.e. cameras which use a primary beam with more or less point-
shaped cross-section, are rarely used for small angle experiments due to their
poor intensity. Only in combination with high-intensity synchrotron sources,
pinhole systems are in current use. They will be discussed in Chapter 3.11.

The current chapter will be confined to a discussion of cameras with slit
collimation, which utilize a primary beam with line-shaped cross-section. In
general, these cameras yield sufficiently high scattered intensity also with
conventional X-ray sources.

In the following, several cameras of this type will be described.

B. Slit Cameras

The simplest collimation system consists of two parallel slits. The narrower
these slits are and the larger the distance between them, the higher is the attain-
able resolution. This simple design has the disadvantage that the slits emit
secondary scattering (parasitic scattering) into the small angle region, which
makes it impossible to use this camera for high resolution work. The design,
however, can be considerably improved by a third slit (Fig. 2, slit S3) which is
adjusted in such a way that it is just not hit by the direct beams 1 and 2, but
absorbs as much as possible from the parasitic scattering originating from slit
S, . Consequently, the parasitic scattering is intense between lines 3 and 4, while
the “diagonal scattering” (limited by lines 5 and 6) is much less intense.
Naturally, it depends on the mechanical precision of the instrument by how
much the region between lines 3 and 4 exceeds the one between 1 and 2. If the
sample to be investigated is a good scatterer, it may be possible to record its
scattering already between lines 3 and 5 (or 4 and 6, respectively) while for
weakly scattering samples one will be confined to the range beyond lines 5 and
6, where the parasitic scattering is negligible. In the plane of registration PR the
zones s correspond to regions of strong, the zones w to regions of weak, parasitic
scattering.

Guinier and Fournet® give a very detailed discussion of the problems and
limitations of slit cameras. We also refer to an original publication, where the
optimum dimensions of slit collimation systems are discussed.®-*

A slit camera which was used very successfully is the one of Beeman and

* Slit cameras of this type are offered by several companies. We mention especially: Rigaku
Corp. Tokyo, Japan.
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FIG. 2. Slit camera with three slits S, , S, and S, , each consisting of a pair ott edges running
perpendicular to the plane of paper. The dimensions in the vertical direction are greatly

enlarged.

WU

FIG. 3. Diagram of slit collimating systemCM(€) (A) X-ray tube exit w}ndow; (B) mica
window; (C) tantalum slits; (D) vacuum connections; (E) Ross filters on slide; (F) GEIGER
counter; (G) high precision screw; (H) calibrated wheel; (I) pivot and sample holder; (J)
rollers.
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co-workers»©) (Fig, 3). Two stationary tantalum slits C collimate the beam
incident upon the scatterer. Two additional slits C analyse the angular distri-
bution of the radiation leaving the sample. The second pair of slits, together
with specimen holder and Geiger counter, are attached to an arm which may be
rotated, by means of a calibrated screw, about an axis through the centre of the
specimen.
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A rather unusual design is adopted in the slit camera of Stasiecki and
Stuhrmann,” whose overall length is 50 m! Half of this length is taken up by
the collimation system, the other half by the distance sample plane of registra-
tion. The authors used this camera to demonstrate that particle scattering can
be recorded even for particles of microscopic dimensions. They studied erythro-
cytes and found a largest diameter of 6 + 0,5 um and a molecular weight of M =
(4,7+1,2) x 10" daltons, which exceed the respective one for smaller protein
molecules by 3 and 9 orders of magnitude. To make this scattering experiment
with erythrocytes on a camera with 20 cm distance between sample and plane of
registration would require an entrance slit of less than 0,5 um and the whole
scattering range would be compressed into a few um. The proportionality

M~ ]_0 al
0
(Iy, zero-angle scattered intensity; Py, primary intensity) illustrates that an
increase in M by a factor 10° and in @ by a factor 10? results in an increase in
the ratio fo/P by 5 orders of magnitude. This has the consequence that the
scattered intensity can be recorded together with the primary intensity. In fact,
the scattered intensity could be obtained (by substraction of a blind curve)
directly from the tail of the primary peak profile.

The success in this interesting experiment suggests that an optimization of the
camera dimensions could be a viable tool for investigations on particles whose
size is intermediate between the classically studied macromolecules and
Stuhrmann’s erythrocytes. It is quite possible, that occasionally a 4-5 m long
camera could improve the results obtainable with conventional instruments. This
is particularly true when a position sensitive detector is being used, whose space
resolution becomes insufficient for large particle dimensions. Even today, one
often uses the position sensitive detector for conventional measurements in
combination with an adaptor to increase the distance sample—detector to 0,5 m.

An auxiliary device capable of considerably reducing the slit-length smearing
is occasionally used in combination with slit cameras: the Soller slit. It consists
of a set of parallel, thin lamellae, whose planes are arranged parallel to the
primary beam axis and perpendicular to the plane of the beam. It is inserted into
the camera behind the primary beam stop. Recently, Todo et al® have des-
cribed such a device with 0,06 mm thick lamellae spaced at 0,6 mm. The authors
conclude that this device yields better results than the bloc collimation system.
It is certainly true that a curve recorded with a Soller slit is more similar to a
desmeared scattering curve than a curve afflicted with the usual slit-length
smearing effect; consequently, some of the errors introduced by the (numerical)
desmearing process are smaller. However, this advantage is accompanied by a
severe loss in intensity. Without a Soller slit one yields, under otherwise identical
conditions, a much higher intensity, smaller statistical errors and hence a better
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starting point for the desmearing process. Whether this outbalances or even
overcompensates the advantage of the Soller slit could only be decided after
extensive test measurements.

The above authors used the Soller slit on a high-power rotating-anode X-ray
source (200 mA, 40 kV), and compared the results to data obtained from a
block camera in front of a conventional sealed tube (35 mA, 45 kV). Moreover,
they did not report counting times. The reported data, therefore, do not offer
a sound basis for a comparative evaluation.

It is certainly conceivable that the intensity loss is tolerable under certain
circumstances, e.g. use of a high-power X-ray source, strongly scattering and
radiation-insensitive samples (Todo et al. used solid high polymers). It remains
questionable, on the other hand, whether a Soller slit used with a weakly scat-
tering sample (e.g. a diluted solution of biological molecules) and a normal
X-ray source would not require counting times which are intolerably long in view
of the limited stability of biological samples.

All in all, the work of Todo et al. has drawn attention to a long known but
rarely used device, which may well be useful for a number of applications. A
final appraisal of its range of applicability, however, has to await additional
studies.

C. The Block Camera
1. THE COLLIMATION SYSTEM

The problem of parasitic scattering can be largely removed with the arrange-
ment depicted in Fig. 4a: it shows a section parallel to the propagation direction
of the beam and perpendicular to the length direction of the focus. The radiation
source is represented by the projection f of the focal spot into a plane perpen-
dicular to the beam axis. Collimation of the beam is achieved by three con-
struction elements, the two blocks B; and B, and the edge E, which all run
perpendicular to the plane of the paper.®»@® It is essential that the plane
defined by the polished upward directed surface Fy of B; coincides exactly
with the downward directed surface F, of B,. This plane is called the main
section H. The width of the entering beam is defined by the distance d between
the edge £ and the main section H. It is easy to see that there should be no
parasitic scattering at all above the main section. In fact, there is a very small
amount of parasitic scattering above H which is due to mechanical imper-
fections. Figure 5 shows schematically how the instrument is designed to ensure
that planes F; and F, coincide: block B; is the centre piece of a U-shaped
body, while block B, called the bridge, is pressed on to its side-pieces from

above.
With respect to the ideas discussed in Sections 3 and 4 of this chapter it may
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be mentioned that it is sufficient to make the block B; quite small, as shown
in Fig. 4b. Essential for the collimating effect is the position of the “middle
edge” M.

2. OVERALL CONSTRUCTION OF THE CAMERA

Figure 6 shows a recent version of the camera mounted in front of the
X-ray tube R,®Y and Fig. 7 gives a vertical section through the camera in the
direction of the X-ray beam. The collimation system C, the sample holder SH
and the primary beam stop PS are all mounted inside an evacuated housing V,
with front window W, and end window W,. This design is a modification of
an older version, which had the sample outside the evacuated region — with
the obvious disadvantage of a higher background due to the scattering from two
additional windows and from the air around the sample. The use of continuous
vacuum follows a suggestion by Hendricks.0'?)

The radiation is recorded outside the vacuum tube. If a film or a position
sensitive detector is used, a stable suspension at the camera housing is sufficient.
For the pointwise recording of the scattering curve the simultaneous movement
of detector slit DS and of the detector D is guided by the slits §; and S, .

Since the focus is an inhomogeneous emitter of radiation, intensity fluc-
tuations can occur if the relative position of focus and collimation system
changes. Suspension of the front end of the camera at the top of the X-ray
tube has turned out to avoid such relative movements between focus and colli-
mation system and to eliminate most thermal and mechanical influences. The
two adjustment screws F; and F, (Fig. 6) are sufficient for an optimum
positioning of the camera.

3. ADVANTAGES AND DIFFICULTIES OF THE BLOCK COLLIMATION
SYSTEM

The above design attempts to reduce parasitic scattering at small scattering
angles in order to permit an extension of the accessible part of the scattering
curve to angles corresponding to Bragg’s values of several thousand Angstrom. At
the same time, the design should reduce the background for the whole of the
scattering curve in order to permit experments with very weakly scattering
samples. Figure 8 demonstrates that these demands are indeed fulfilled. The
parasitic scattering does not extend beyond 1,5 x 107 radians (~ 1000 A), and
the effect of parasitic scattering can easily be corrected for by appropriate sub-
stractions for angles down to 0,65 x 1073 radians (=~ 2400 A).

Figure 9 gives another relevant comparison. It shows the scattering curve
of polyethylene, which is frequently used as a secondary standard for absolute
intensity measurements (Section V). Since its scattering curve is known with
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high accuracy,®” polyethylene is also useful as a test substance for camera
checks. It is apparent that the blank scattering of the camera alone, which is
exaggerated in Fig. 9 by a factor of 10, is negligible compared to the Lupolene
curve for the whole given angular range.

Figure 10 shows the scattering curve of a solution of high density Lipoprotein.
Again, one can see that, in spite of the relatively large entrance slit of 100 um,
the camera scattering is negligible down to 500 A, Bragg’s value, even compared

to the blank scattering of the solvent-filled capillary.*
It is this asymmetric design which is the main difference to other systems,

* The camera of this design is offered by A. Paar KG., Graz-Strassgang, Austria.
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FIG. 4. Section through block collimation systems.®> 1) The dimensions in the vertical
direction are greatly enlarged. (S) sample; (P) primary beam profile; (PS) primary beam stop;
(PR) plane of registration.

which have (compare with Section III.B and Fig. 2) a region of parasitic scatter-
ing on both sides of the primary beam. Of course, it is possible to measure down
to any small angle with a slit camera too, by simply using sufficiently narrow
slits, but the intensity will be smaller by a factor 4-6 compared to a block
camera adjusted for the same resolution.””” This advantage of the block colli-
mation has to be payed for by two difficulties.
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FIG. 5. Schematic drawing of the collimation system. (1) (P) primary beam. Explanation
of the other symbols — see legend to Fig. 4.

FIG. 6. Small angle camera.¢")

(1) As a consequence of the asymmetric design, the scattered radiation can
only be recorded at one side of the primary beam; below the main section H,
the parasitic scattering is very strong. The zero-point of the scattering curve must
therefore be determined by measuring the primary beam intensity profile.

(2) At large angles, where parasitic scattering is negligible anyway, the block
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FIG. 7. Section through the small angle camera.®?

collimation system yields less intensity than systems with two or three slits. This
is so because block B, (Fig. 4b) partially screens the primary beam entering
through entrance slit d and hitting the sample S in the zone e. According to an
old suggestion by Henke®® and Schulze,™® this disadvantage can be removed by
shifting the block B; below edge E (now designed by B}) (Fig. 4c). This modi-
fication results in a very broad primary beam profile P, which could not allow
high resolution. To improve the resolution, Henke and Schulze use a sample
with a very sharp lower edge which is only partially immersed into the beam
as shown in Fig. 4c. In spite of its advantages, this modification has hardly been
used, mainly due to difficulties in determining the zero point of the scattering
curve, in measuring the absolute intensity and in obtaining the sample in a form
which fulfills the very stringent geometrical constraints. The arrangement in
Fig. 4d has the gain in intensity of Henke and Schulze’s set-up, without its just
mentioned disadvantages. Since the newly inserted edge £’ which defines a lower
limit for the primary beam emits parasitic scattering up to the limit /, one can
only measure, with complete absence of parasitic scattering, above /. It is there-
fore advantageous to use the arrangement in Fig. 4e for measurements at very
small angles (which is for this purpose equivalent to Figs 4a and b) and to switch
to the arrangement in Fig. 4d at larger angles by removing B; and inserting E'.

4. AMODIFICATION OF THE BLOCK COLLIMATION SYSTEM:
INTEGRATION OF THE X-RAY TUBE INTO THE CAMERA

A recently proposed and tested arrangement incorporates some of the above
ideas™ (Fig. 4f): the collimation system consists only of the blocks B} and B, ;
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FIG. 8. Measurements with the block camera. (1) Scattering of polyv'mylchloriqe powder
in 1 mm Mark capillary; (2) blank scattering of the capillary; 3 bla_nk scattering of the
empty camera. Curves 2 and 3 are corrected for absorption. (H) Main section, entrance
glit 43 um, counter tube slit 15 um.

in addition, the anode plays an integral role for the collimation. With the focus
f well above the main section, the anode takes the function of the edge E in the
conventional design. The integration of the focus into the collimation system
requires that position and orientation of the anode plane with respect to the
rest of the collimation system is extremely well defined (positional errors must
not exceed 1-2 um). The X-ray tube is therefore mounted into a holder which
is part of the camera housing.

While the conventional block collimation system produces a primary beam
with triangular intensity profile in the plane of registration (Fig. 4a), the inte-
grated camera yields a trapezoidal primary beam. The dimensions of this trape-
zoid are determined by the distance 4 between the upper end of the focus and
the main section H, and by the width of the projection of the focus. The highest
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FIG. 9. Measurements with the block camera. (1) Blank scattering of the empty camera
exaggerated by a factor 10; (2) scattering of lupolen. Entrance slit 80 um.

intensity is obtained if the beam profile is rectangular. Since the steepness of the
sides of the trapezoid increases with decreasing focal width, it is advantageous to
use a narrow focus of high brilliance. Since the anode is a surface radiator, a
decrease in the take-off angle increases the brilliance of the focus (while the
total energy remains constant). There is in practice a lower limit in the take-off
angle due to imperfection in the planarity of the anode surface, which deterio-
rates with increasing age of the tube. Thus, it is unsafe to decrease the take-off
angle beyond 3°. However, if one also uses a fine focus tube (with only 0,4 mm
focal width), the increase in brilliance, compared to a normal tube with the usual
6° take-off, is considerable: both theoretical considerations and measurements
show that this arrangement yields at medium scattering angles an intensity
about two times higher (for the same resolution) than the arrangement in Fig. 4a
or b. At very high resolution, when the focus “touches” the main section, the
gain in intensity is even as high as a factor of three to four,

D. The Bonse-Hart Camera(16)»(17)

This instrument is based on multiple reflections of the primary beam from
opposite sides of a groove in an ideal germanium crystal (2 in Fig. 11). The



70 0. KRATKY
Imp/s
300
200
)

100

-/ 3

600 150 100 50 20 5

D[R] 44—

FIG. 10. Measurements with the block camera. (1) Scattering of a HDL, solution, 5,1%;
(2) blank scattering of the Mark capillary with solvent; (3) blank scattering of the empty
camera; corrected for absorption. Exaggerated by a factor of 10.

FIG. 11. Schematic drawing of the Bonse-Hart camera.

divergence of the beam decreases every time it is reflected from one of the walls,
leading to a strictly monochromatic beam with a divergence of only several arc
seconds. After penetrating the sample 3, the beam is again reflected several times
from the inner walls of a second crystal 4 and finally enters the detector 5. Crys-
tal 4 can be turned about an axis perpendicular to the plane of the paper with a
precision spindle. This rotation of crytal 4 about its centre allows the recording
of the small angle scattering originating from the sample: it is easy to see that if
crystal 4 is turned by an angle, a say, from its position parallel to crystal 2, only
the radiation scattered by the sample to the same angle can reach the detector.
The appealing feature of this ingenious design is the fact that one can measure
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FIG. 12. Comparison of intensities as a function of resolution between the Bonse-Hart
system and the block collimation system.

down to the smallest angles without using a narrow entrance slit: all other
techniques have to deal with the fact that the primary intensity drops rapidly
due to the narrow entrance slits required to measure down to very small angles,
while the Bonse-Hart system uses the same primary intensity for all angles. On
the other hand, with decreasing resolution, the other methods offer the option
of increasing the size of the entrance slit with concomitant increase in primary
intensity, while the Bonse-Hart system does not offer such an option.

A quantitative experimental comparison with the block collimation system
has yielded the result presented in Fig. 12:® while the Bonse-Hart system BH
yields constant intensity, the primary intensity of the block collimation system
K increases with the third power of the width of the entrance slit e (which, in
turn, is inversely proportional to the highest attainable Bragg’s value). The two
curves intersect at an angle corresponding to a Bragg’s spacing of about 7000 A.
If, say, it is sufficient to obtain a resolution of 1000 A, the block camera yields
a 7°(= 343) times higher intensity than the Bonse-Hart camera. Alternatively,
if one aims at a resolution of, say, 3 x 7000 A (= 21000 A), the Bonse-Hart
system is more sensitive by a factor of 33(= 27). Since the majority of appli-
cations of the small angle technique require resolutions far below 7000 A, the
Bonse-Hart technique has up to now only been used in a few special problems,
in spite of its truly ingenious design. We refer to measurements on polystyrene
latex spheres of 5570 A diameter™® and materials of interest to petroleum
production (Dwiggins)”® with radii of gyration up to 35000 A.
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Recently, M. Deutsch® has reported remarkable improvements in the
Bonse-Hart camera. It is clear from the above, that the Bonse-Hart camera in
its original version yields an enormously high resolution, which is unnecessary
for the majority of applications. The price for high resolution is low intensity:
“The usual trade-off of lower resolution for higher intensity, so easily accom-
plished in its slit collimating system by opening up the slits, is impossible,
here” (Deutsch).” Deutsch suggests two modifications of the Bonse-Hart
camera, which reduce resolution but increase intensity : reduction in the number
of reflections from 5 to 4,2 or 1 and grinding the crystal in such a way, that the
grooves do not run parallel to the reflection plane; thus, the angle o between
crystal surface and reflected X-ray beam can be adjusted to any value between
@ and close to zero.

The two above parameters can be chosen such that the result is similar to
opening the slits in a slit camera. There exists a crossing point for each number
of reflections, where resolution and primary intensity are the same for the
block collimation and the modified Bonse-Hart system. Deutsch finds, that 4,
2 and 1 reflections correspond to slit width of 30, 54 and 125 um, respectively.
However, Deutsch has based this consideration on the block collimation system
as it was in 1970. More recent improvements (integrated camera, c.f. Fig. 3f)
have yielded a considerable increase in intensity at least by a factor of 2, at
smallest angles at least a factor of 3. This shifts the cross-over points to 23, 41
and 94 um for 4,2 and 1 reflections, respectively. These slit widths correspond
to largest measurable Bragg’s values of 3900, 2200 and 960 A. In summary
the Bonse-Hart-Deutsch system is superior at Bragg’s values larger than 960 A;
the block system is superior at smaller Bragg’s values. The whole of the above
discussion assumes, however, that the background radiation, which was (accord-
ing to Kratky and Leopold®) much stronger for the Bonse-Hart collimation,
can indeed be drastically reduced with the measures suggested by Deutsch.%
So far, no real measurements have been carried out with the new system, but its
potentials for high-resolution investigations need serious consideration.

E. The Glass Camera of Schnabel, Hosemann and Rode(?®)

These authors have described a new type of small angle camera. Following an
older suggestion by Damaschun et al.,®" they use a polished, totally reflec-
ting glass plate as a monochromator; a second glass plate shields the plane of
observation from background radiation. The primary beam is limited only by
the width of the microfocus and by the slit between the two glass blocks.

The authors report comparative tests between their instrument and the
block camera described above, using 20 um and 60 um entrance slits on both
instruments. They find that the glass camera yields a 4,2 times more intense
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primary beam with a 20 um entrance slit, while the block camera is better by a
factor of 2 when a 60 um entrance slit is used.*

F. The Cone Camera

Many proteins have very weak subsidiary maxima in the tail end of their scat-
tering curve. Exact knowledge of position and height of these maxima is very
important for a reliable determination of particle shape (in the case of non-
spherical molecules) or radial electron distribution (for spherical particles). The
collimation effect introduced by slit cameras (“slit length smearing”’) levels such

weak maxima and it is difficult to obtain them quantitatively correct from the
desmearing procedure.

DS

FIG. 13. Schematic drawing of the “‘cone camera”. Dimensions in the vertical direction
are greatly enlarged.

For such problems the “cone camera”®@3) can be useful: its rotationally
symmetric collimation system (Fig. 13) collimates a primary beam that has the
form of a cone shaped shell. The camera consists of a hollow, truncated cone HC
and a conical needle NV, which are both concentric with the rotation axis R. The
needle is held inside the hollow cone by very small pins. It extends into the
cylindrical body Z, which serves for the elimination of parasitic scattering. The
primary beam penetrates the flat sample S adjusted perpendicular to the cone
axis and hits the primary beam trap PT consisting of a circular screen. Radiation
scattered to the angle 26 enters into the pinhole diaphragm PD and is recorded
by the detector D. The angle 28 is changed by a shift of the sample along the

* This camera is obtainable from Robert Huber, D-8211 Rimsting, West-Germany.
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camera axis to any point between collimation system and pinhole diaphragm.
Two possible positions of the sample and the corresponding scattering angle 20
are indicated in the figure.

The observed intensity is affected by a moderate collimation effect of the
kind known as slit width smearing in the case of line shaped primary beams.
For its mathematical elimination we refer to Kratky et al.®*

At present, this camera is only suitable for measurements in the tail end
of the scattering curve, since very small opening angles of the collimation system
are mechanically not feasible. The present version allows a variation of the Bragg
spacing between 7,7 and 65 A.

Encouraging results have so far been obtained in the application of this
camera to the study of high polymersm) and biological macromolecules in

solution.®%

1V. Monochromatization

Quantitatively correct interpretation of diffuse small angle X-ray experiments

requires the knowledge of the scattering curve corresponding to monochromatic

radiation. Polychromatic effects have to be eliminated, either experimentally or

numerically. The following methods are in use:

(1) Pulse height discriminator alone or combined with a Kg-filter.

(2) Pulse height discriminator combined with numerical elimination of the Kg-
contribution.

(3) Balanced filters.

(4) Crystal monochromator (Bragg reflection), either in the incident or in the
diffracted beam.

(5) Totally reflecting mirror, usually consisting of a carefully polished glass
plate.

(6) Numerical elimination of polychromatic effects.

In the following, each method will be briefly discussed.

A. Pulse height discriminator, alone or combined with a
Kg-filter

So far, this seems to be the most widely used method. The pulse height dis-
criminator (Chapter 3. III), which is tuned to the Kg-line, is connected to a
proportional or scintillation counter. The efficiency in suppressing white radi-
ation is inversely related to the channel width. The wavelength of the Kg-line
is too close to the K,-wavelength to be sufficiently attenuated by the pulse
height discriminator alone (for example: M(CuK,) = 1,54 A; MCuKp) = 1,39 A).
This necessitates the use of a Kg-filter. In the following, the discussion will be
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limited to copper radiation, for which the Kg-filter consists of a nickel foil. The
absorption edge of nickel lies between the CuK, and the CuKg wavelengths;
thus nickel absorbs Kg much stronger than K. Usually, a 10 um thick nickel
foil is quite suitable. Since such a filter attenuates the K,-radiation by a factor
of 0,67, many workers refrain from the use of a Ni-filter. In fact, this introduces
only a small error in the scattering curve: the influence of the Kg-radiation is,
at least partially, compensated by wavelengths longer than K, which, due to
their higher absorption, are counted more efficiently than shorter waves.

B. Pulse Height Discriminator Combined with Numerical
Elimination of the Kg-contribution

Zipper® has shown how the influence of the f-line can be eliminated numeri-
cally. This method avoids intensity losses through absorption by the g-filter. It
requires knowledge of the intensity ratio y between Kg and K, which is deter-
mined from several intensity measurements.

If vy is known, the numerical monochromatization can be performed simul-
taneously with the desmearing procedure. (Glatter®?”).

C. Balanced Filters

This monochromatization technique by Ross®® requires two exposures with
different filters in front of the collimation system, under otherwise identical
conditions. For copper radiation, the two filters consist of nickel and cobalt,
respectively. The wavelength of the absorption edge of cobalt (A = 1,604 A)
is slightly above the CuK, wavelength, the one of nickel (A = 1,483 A) just
below. Let Ty; be the thickness of the nickel filter and T, the one of the
cobalt filter; we call the two filters “balanced” if Ty; and T¢, have a certain
optimal ratio, namely Tp;/Tco = 1/1,0711. Under this condition, substraction
of the two scattering curves leaves only the contribution from radiation whose
wavelength lies between the two absorption edges. Contributions from radiation
with A <1483 A and with A > 1,604 A cancel. Since the total intensity of
continuous radiation in this narrow range is negligible compared to the CuK,
intensity, the difference curve can be regarded as monochromatic. The maxi-
mum intensity is obtained with Ty; = 6,99 um and T¢, = 7,48 um.

In spite of its conceptual ingenuity, this technique is used relatively seldom
due to experimental difficulties: two measurements must be performed under
strictly identical conditions. In particular, the time-integral over the primary
intensity (i.e. the total energy) has to be identical for both measurements.
Methods for the preparation of suitable metal foils for copper radiation have
been described.®” For molybdenum radiation, the pair consists of one Zr and
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one Y (or Sr) filter. Practicable methods for the preparation of filters of correct
thickness were described for Zr®® and Sr®?,

D. Crystal Monochromator, in the Incident or Diffracted
Beam

In the majority of applications, the monochromator crystal is positioned in front
of the collimation system, so that the sample is hit only by the purely mono-
chromatic radiation. We refer to the exhaustive description of several types of
monochromators,®@?:63? including the flat quartz monochromator, the
bent quartz plate (Johann) and the monochromator consisting of a bent quartz
plate whose surface is ground to twice the bending curvature (Johannson).

Several arrangements for the use of monochromators have been described
in the literature, viz. by Damaschun et al,?” Guinier,®” Fankuchen,®%
Luzzati et al.®»G? and by Pessen etal.®®. An interesting combination of
a Johannson monochromator with a Cauchois-transmission monochromator
was described by Jagodzinski and Wohlleben® in their camera for film
detection.

The biggest disadvantage accompanying the use of most crystal mono-
chromators (e.g. quartz) is the considerable loss in intensity. Sparks“? was able
to demonstrate that hot-pressed pyrolytic graphite is a highly efficient X-ray-
monochromator, which largely overcomes this drawback. Hendricks®*" was
the first who introduced this monochromator into the field of small angle
scattering and who extensively tested its suitability. Graphite is favourable for
small angle scattering because its mosaic spread roughly equals the divergence
desired for the primary beam in the plane perpendicular to the longitudinal
direction of the entrance slit.

Contrary to previously used set-ups, Hendricks®*? recommends mounting
the monochromator behind the detector slit. A completely polychromatic
primary beam thus penetrates the sample; only the scattered radiation hits
the monochromator, which reflects the monochromatic component into the
detector. The detector slit moves as usual on the perimeter of a circle whose
centre is the sample axis. Monochromator crystal and detector are rigidly
attached to the detector slit.

Whenever radiation-sensitive samples are under investigation, it is more
favourable to mount the monochromator in front of the camera. Hendricks’
technique, on the other hand, is preferable if the sample emits fluorescent
radiation, e.g. if copper radiation is used and the sample contains iron. This
fluorescent radiation will be completely eliminated by the monochromator
behind the detector slit, while it would be registered if the monochromator is
in front of the sample. Another advantage of Hendricks’ arrangement is, in
any case, the simpler alignment of camera and monochromator.
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E. Totally Reflecting Mirrors

Damaschun et al.®" have demonstrated, that reflection from a carefully polished
glass surface is a practicable monochromatization technique for small angle
investigations. Figure 14 shows the arrangement of the reflector, combined with
the collimation system described by Kratky, and Kratky and Skala.®»(® The
characteristic radiation retains 90% of its intensity, but reflection does not
yield completely monochromatic radiation. For many applications, however
the degree of monochromatization is sufficient. ,
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F;act-' ;4. Monochromatization according to Damaschun et al. by total reflection at a glass
plate R.

F. Numerical Elimination of Polychromatic Effects

It is convenient to determine the spectral composition in the primary beam with
the help of a small X-ray spectrograph, which is inserted in front of the counter
tube. The monochromatic scattering curve free of polychromatic and convol-
utional distortions can be obtained numerically (Glatter®?) from the primary
beam profile (in length and width directions) and from the spectral composition.
This procedure combines the advantage of the full direct beam with complete
monochromatization. In view of this advantage, the time required for the deter-
mination of the spectral composition should be negligible.

V. Absolute Intensity

Experimental determination of the molecular weight, the mass per unit length
of elongated particles, the mass per unit area of flat particles and the volume
fractions in multi-phase systems requires knowledge of the absolute intensity,
i.e. the ratio of scattered intensity to primary intensity (see Chapter 4, eqns 49,
54, 58, 77). While the scattered intensity can be directly determined with
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commercially available instruments (see Chapter 3.III), direct determination of
the primary intensity is not possible due to the rapid succession of quanta in
the primary beam which cannot be resolved even with the most advanced
detectors.

Several methods have been described to overcome this difficulty. First, we
mention Luzzati’s method “#?-@»@® which was developed mainly for copper
radiation. It involves the determination of the absorption of several thin nickel
foils, which are then stacked to yield sufficiently strong attenuation of the
primary beam by several orders of magnitude. The individual filters of such a
stack have to be calibrated very carefully, since errors in the absorption of
individual filters may add up. The method requires strictly monochromatic
radiation, since even a small contamination with short-wavelength radiation will
lead to large errors due to the strong inverse dependence of absorption and
wavelength. Thus, Luzzati’s filter method can be used only in combination with
crystal monochromatization of the primary beam.

At the same time, a method was introduced which involves a defined mech-
anical attenuation of the primary beam.®%> @8 The instrument, which was called
the “rotator”, uses the principle of a sector diaphragm. Although the method
was only used in few laboratories, it has served as a convenient instrument to
calibrate secondary standards,*™ which are today in wide use.

Such a secondary standard consist of a platelet of polyethylene (*“Lupolen”
1811M of the Badische Anilin & Sodafabrik), whose absolute intensity, i.e.
the quotient of scattered and primary intensity, is determined for an angle of
0,01603 radians (corresponding to a Bragg spacing of 150 A). Rapid and simple
determinations of the primary intensity are then possible in every laboratory
with access to such a calibrated Lupolen. It should be noted at this point, how-
ever, that the quotient in absorption between secondary standard and sample
under investigation has to be allowed for, i.e. the user has to measure the absorp-
tion of his sample, while the determination of the absorption of the Lupolen
standard is part of the calibration procedure.

The question was raised whether radiation effects and varying temperature
might change the scattering behaviour of Lupolen. A systematic investigation®®
showed that, between 4°C and 30°C, the temperature effect is strictly reversible
and the scattering power increases 1% per 1°C. In the course of another study, it
could be shown that a very high dose of X-rays (a high multiple of the dose
applied in the course of many years’ normal use) did not lead to any detectable
change in scattered intensity.”

These positive results are confirmed and supplemented by an interesting study
by Schaffer and Hendricks.®® They demonstrated how one can determine a
calibration constant for Lupolen which is independent of collimation condition

and wavelength.
The recently developed ‘“Moving Slit Method”®V offers another alternative
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method for the direct determination of the primary energy. Like the “Rotator
Method” it is based on a defined mechanical attenuation of the primary beam.
Two slits are installed perpendicular to the plane of the primary beam; the one
with width L, is located in the plane of registration, the other one (width L) is
located near the focus. The second slit can be moved with velocity v across the
length of the beam. The primary intensity P, (energy cm™ s™ of the primary
beam) can then be calculated from

Py = LN - (1)

f r

where N is the number of quanta reaching the counter during one passage of slit
L. This determination is usually carried out with the sample inserted at its
usual position, in which case Py already contains the sample absorption.

With L, and L; in the order of 10~2cm (which can be determined with
sufficient accuracy under a microscope) and the velocity v around 0,1 cm s~
(controlled by a step motor), one typically obtains a count N between 10000
and 100000 in the 10s required for one passage of slit L;. Thus, the corre-
sponding count rate is well within the time resolution of a proportional counter
and the determination is unaffected by coincidence errors. The determination
can be repeated to reduce the error from counting statistics. In any case, the
time required for one determination of the primary intensity is in the order of
60s. It is, therefore, straight forward to determine the primary intensity before
and after each scan through the region of scattered intensity, which not only
yields the absolute intensity but may also indicate primary intensity fluctuations.

Several authors have also developed primary standards.®® They consist of
well defined samples for which the ratio of primary intensity and scattered
intensity can be evaluated theoretically. A particularly carefully developed
method is the one of Beeman,®®®® Schaffer® and Katz,®® which uses the
scattering of various gases (C4Fg, SF¢ and CCl,F;). Another method by Patel
and P. Schmidt®? is based on Silica Gel as scatterer, and still another one
(P. H. Hermans et al.) uses Goldsol.®® The latter method is based on the experi-
mental determination of the invariant, which is related to the primary intensity
through the mean square fluctuation of the electron density which, in tumn,
can be calculated from the known composition of the sample (Eqn 77 in
Chapter 4). Although the method is conceptually appealing, it is not very
accurate due to difficulties in performing a precise experimental determination
of the invariant.

None of the techniques using primary standards is used frequently in routine
small angle work, mainly because the preparation of the standards is difficult
and the measurements are time-consuming. So far, only Luzzati’s filter method
and the Lupolene method (which, of course, requires the “rotator” for cali-
bration) are in routine use. The moving slit method is still too new to have
found widespread application.
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When films are used for the recording of radiation (compare Chapters 3.111
and 7), the determination of the primary intensity is comparatively simple. A
convenient method®¢? is to move the film perpendicular to the primary
beam’s length direction during the exposure of the (unattenuated) beam, thus
producing a broad band. The total time of exposition is around 60s, and the
blackening of the resulting image can be conveniently densitometered. Exposi-
tion of a stationary film to the direct beam would require very short exposure
times (fractions of a second, which is hard to achieve) and has the additional
disadvantage of producing an image with very steep flanks, which is difficult
to densitometer.

A recently described method for absolute intensity determination by Sassoui,
Hosemann and Cadkovi¢®® also uses a film as a radiation detector: here, the
primary beam stopper emits fluorescent radiation, a defined fraction of which
hits the film. The method, however, has to be calibrated with a constant radi-
ation source, so that it corresponds to a secondary-standard technique, In the
present form, it can only be used in combination with a pinhole camera.

V1. Experimental Elimination of the Effect of
Intensity Fluctuations, Monitor

No other type of X-ray scattering experiments requires as stable X-ray sources
as small angle investigations: SAXS measurements frequently take many hours,
in the course of which the scattered intensity is recorded at many different
angles; intensity fluctuations during that time, therefore, lead to a deformation
of the observed curve. The stringent requirement for maximum stability in the
primary intensity can only be relaxed if a position-sensitive detector (Chapter
3.II) is used, since it records the whole of the scattering curve simultaneously.

The most important reason for intensity fluctuations seems to be the relative
movement of the camera with respect to the anode; such a movement may either
be caused by mechanical or by temperature effects, which cannot be avoided
even by careful stabilization of the room temperature: the X-ray tube, which is
heated and cooled at the same time, never allows a constant temperature of the
entire system. The suspension of the camera at the top of the X-ray tube near
the anode is capable of reducing these effects, as discussed above.

A monitor, however, would be a very useful and important tool if a camera
of this type were not at one’s disposal, or some other recommended precautions
(compare Chapter 3.1, Section I) could not be observed because the necessary
equipment was unavailable, or if one is aiming at the very highest precision.

The basic idea of the monitor is to divide the scattered intensity by the
(simultaneously recorded) primary intensity or a quantity proportional to it.
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This obviously eliminates errors in the scattering curve caused by fluctuations
in the primary intensity. Several ways have been suggested and tried for the
experimental implementation of this idea.

Chipman and Jennings,®” and Jennings et al.®® use the scattering of a
mylar foil in the primary beam as a reference.

Recently, Hendricks ef al.®® have suggested an arrangement with an ioniza-
tion chamber within the collimation system.

Another suggestion® involves the use of a Bragg reflection originating
from the primary beam stop made from platinum. Becherer et al.®® record the
fluorescence induced by the copper radiation on the iron beam stop. In a modi-

fication of this method, cobalt is used instead of iron, since it appears to be

more suitable for this purpose:©® its absorption edge (A = 1,608 A) lies closest

to the wavelength of the CuK, radiation (A = 1,54 A), and the most intensive
fluorescence is obtained.
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I. Experimental Design
A. Point Collimation

As has been discussed in Chapter 3.1, in the majority of small angle scattering
studies of solutions it is advantageous to use slit collimation as compared with

856
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FIG. 1. Diagram showing the geometry of a point collimation camera. The angular resolving
power is given by the diameter (A) of the collimated beam at the detector plane. The
smallest angle of observation is determined by the diameter (B) of the penumbra producepl
by the guard aperture immediately in front of the specimen. The parameters u, v and D will

be chosen to optimize the intensity for a given case (see, for example, Hendricks, 1978).

point collimation because of the considerable gain in X-ray flux. Slit collimation,
however, leads to difficulties at small angles, where the form of the aperture is
convoluted with the profile of the required scattering curve. If the accurate
form of the scattering curve is required for detailed analysis it is advantageous
to use point collimation. Point collimation is most easily achieved by the use of
a point source and two round apertures. The first aperture defines the beam and
the second limits the scatter from the first aperture (Fig. 1). Two criteria define
the resolution of the system:

(1) the smallest angular approach to the main beam which can be achieved

before encountering scatter from the defining apertures;

(2) the angular resolution of the instrument.

In low angle scattering applications the second criterion is, on the whole, less
critical than the first. Optimum performance is usually achieved with the guard
aperture about mid-way between the defining aperture and the detector. To
achieve reasonable speed of data collection it is necessary to integrate over
circles in the detector plane. In practice this is conveniently done by means of a
two-dimensional gas counter.

The nature of the apertures deserves comment: in the simplest case these
would be pinholes in an appropriately dense material, electron microscope
apertures turn out to be very good for the purpose. In the case of normal X-ray
diffraction cameras intended for crystal diffraction, such apertures are mounted
colinearly in a brass tube about 10 cm long. However, the angle of closest
approach to the direct beam for such systems is usually about 2° making such
collimators unsuitable for low angle scattering. Better low angle performance
is achieved by making the system longer, however longer systems are difficult
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to align so that such systems are often based on mutually perpendicular slits
rather than round apertures. The apertures should be made out of a suitable
hard dense material (e.g. dental gold) which does not fluoresce in the radiation
being used. The apertures must be carefully aligned with each other and must
be shaped so as to avoid reflection from the surfaces in the beam. Normally,
the required accuracy of alignment is achieved by mounting the apertures on an
optical bench. Provision for evacuating the beam path (or for using helium filled
tubes) must be made. This requirement can complicate the design considerably
because it is not desirable to have X-ray windows close to the sample. A vacuum
camera incorporating carefully made round (pinhole) apertures is marketed by
Anton Paar K.G. (Graz).

The use of the characteristic scattering from an X-ray tube without a monochro-
mator exacerbates the problem of parasitic scattering. To reduce scattering one
can use a graphite monochromator or one can employ focusing monochromators.

A further consideration in the design of point collimation cameras is scale. If
the size of the sample is not limiting then it is usually advantageous to make the
system as big as possible (this would not be true if one were employing film as a
detector, but film is not very suitable for low angle scattering on account of its
limited dyamic range). A consideration working against this strategy is the fact
that X-ray tubes become more brilliant the smaller the source. In practice the
small brilliant source is better suited to use with focusing optics. Analyses of
the optimum strategies have been given by Hendricks (1978) and by Rosenbaum
and Holmes (1980). A highly developed system making use of conventional
sources (high power rotating anode tubes) is the ORNL 10 meter camera at Oak
Ridge (Hendricks, 1978).

With the use of focusing elements such as curved mirrors and curved mono-
chromators it is possible to achieve much higher fluxes than can be achieved
with simple collimation but often at the cost of high parasitic scatter from the
unguarded surfaces of the optical elements. The guarding can be achieved by
making the apertures small, but with a concomitant loss of flux. However, the
introduction of synchrotron radiation sources has dramatically altered the design
possibilities for point focus cameras. The excellent optical properties and the high
intensity lend themselves to the production of point focused beams with small
numerical aperture so that the construction of long well-guarded cameras is
possible. This has led to a renewed interest in X-ray optics and X-ray optical
elements. A review of current small angle scattering using synchrotron radiation
has been given by Stuhrmann (1978).

B. Synchrotron Radiation

The special properties of a synchrotron radiation source are:
(a) very high intensity; (b) very good intrinsic collimation; (c) the source is white;
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(d) the radiation is emitted in pulses a few tenths of a nanosecond long with a
repetition frequency of a megaherz.

A general description of synchrotron radiation has been given in a number of
texts (e.g. Godwin, 1969). The most pertinent properties are summarized below.

In an electron synchrotron or storage ring the electrons (or positrons) travel-
ling at very high speeds are constrained in a circular trajectory by means of
electromagnets. Accelerated charges radiate energy. The electrons are subjected
to a strong centripetal acceleration in each bending magnet. The strength of the
radiated field is proportional and parallel to the second derivative of the vector
joining the observer to the moving charge. Since the electrons are travelling
at essentially the speed of light, in evaluating the radiated field one must take
account of the time it takes a signal (potential) leaving the electron and travel-
ling with the speed of light to reach the observer. A diagram of the situation is
given in Fig. 2a. The points 4, B, C and D represent the position of an electron
on a circular trajectory at equal time intervals.

The circles a, b,c and d are the boundaries of propagation of information
about events 4, B, C and D (retarded potentials). The boundaries bunch together
along lines which are tangent to the electron trajectory. A graph of the apparent
lateral displacement as a function of time is a hypercycloid (Fig. 2b). The
amplitude of the radiated wave is proportional to the second derivative of this
curve. At the cusp of the hypercycloid the second derivative reaches a high
value for a very short time (in more pictorial terms the electron appears and
disappears very suddenly). Typically, the pulse of radiation has a duration of
10785, From the length of the pulse one can evaluate the spectral distribution
and one finds that the maximum is in the X-ray region. The first full theoretical
treatment was given by Schwinger (1949). Using Schwinger’s formula one may
evaluate the spectral distribution and intensity for mono-energetic electrons at
various energies. A useful parameter of synchrotron radiation is the critical
wavelength A,. The dependence of A, on the radius of curvature (R) and energy
(E)is

Ae = 5,59RE™3 (1)

(These and the following formula are taken from the review article by Godwin
(1969).) The maximum power is found at

Amax = 042X, (2
Near A,a We have the approximate relationship for the intensity
I = 9x10%47R™3 3)

The parameter 7y (the ratio of the relativistic to rest mass of the electron) is
given by
¥y = 1890F 4)
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FIG. 2. (a) ABCDE represents the curved trajectory of an electron travelling with a speed
very close to the velocity of light. The circlesa, b, ¢, d are the boundaries of propagation of
information about the events ABCD. They spread out with the velocity of light and because
of the very high speed of the electron they bunch together along tangents to the electron
tra]icctory (e.g. XY). (b) A graph of the lateral position of the electron as a function of time
as it appears to the observer at the point X. The information that the electron was at 4 is
available only a short while before the information that the electron is at B, C or D. To the
observer these three events apparently occur at about the same time. The information that
the electron is at E arrives later. Therefore the electron appearsand disappears very suddenly.
T_he radiated electromagnetic field is proportional to the second derivative of the apparent
displacement so that the electron gives rise to a very short pulse of radiation as it comes into
the tangent position with respect to the observer.

(Note that for these equations, the units of measurement are R(m), E(GeV),
I(ergs™ A™! electron™).)

Equation (3) demonstrates the great sensitivity of the emitted intensity to
the electron energy. The angular spread of the beam is approximately * 1/y [i.e.
about +0,12 mrad at 5 GeV]. Thus the beam travels along a line which is
tangent to the instantaneous electron path. The vertical divergence of the beam
(1/7) is very small.

A special property of the synchrotron source is the correlation between the
direction of emission and position in the plane of the source. This is due to
the fact that the trajectories of the electrons in the ring are themselves part of
an optical system. Moreover, because of the colinearity of the electron and the
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emitted radiation the electron trajectories are essentially part of the external
optical system. Therefore, the electron paths must be included in a consideration
of the optical properties of the source (Hastings, 1977). This is done by con-
sidering the luminosity (B) as a function of position and angle in an optical
phase space (Green, 1976; Hastings, 1977). Compared with conventional sources
the unusual property of synchrotron radiation is that the source is virtual and
astigmatic. The apparent dimensions of the X-ray source (S, S ) are the widths
of the luminosity functions at some virtual source points. In practice one has to
establish empirically where the source points are. The use of a pair of cylindrical
lenses for the X-ray optical system allows the correction of the astigmatism of
the source.

The average luminosity (B photons per unit solid angle per unit area per wave-
length interval) is an invariant of the system: all non-lossy optical elements leave
this quantity unaltered — it can only be degraded. This result can be obtained by
applying Liouvilles’ theorem to the function B in the optical phase space. The
average luminosity is calculated by taking the total number of photons emitted
per unit wavelength interval per radian in the x-y plane and by dividing this
number by the area of the virtual source (S, Sy) and by the apparent angle of
vertical divergence.

C. X-ray Optics
1. THE OPTICAL ELEMENTS

The most readily obtainable X-ray focusing elements of sufficient perfection
to be used with synchrotron radiation are cylindrical lenses: curved mirrors
used at grazing incidence and curved crystal monochromators used at small
Bragg angles. A review of curved mirrors and curved crystal monochromators
for conventional sources has been given by Witz (1969). Curved crystal mono-
chromators behave as mirrors when used with white radiation so that the two
classes of focusing elements can be treated in a unified way. Monochromators
have the extra property that a variation in the glancing angle 0 (the Bragg angle)
leads to a variation in the reflected wavelength.

The combination of a curved mirror at right angles to a curved monochro-
mator was introduced for conventional X-ray sources by Huxley and Holmes
(see Huxley and Brown, 1967) in their investigations of scattering from muscle
fibres and was introduced for synchrotron radiation by Barrington Leigh and
Rosenbaum (1974). For many applications this turns out to be the best com-
bination.

Most of the electrons in atoms behave as if they were free when illuminated
with X-radiation. As a result the refractive index of solids for X-rays is slightly
less than unity and total external reflection can be observed from polished
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surfaces at grazing angles of incidence. Typically the critical grazing angle for
total external reflection (8.) lies between 3 mrad and 10 mrad. Electron dense
materials have a larger 8, but have also higher absorption, which leads to the
critical reflection phenomenon becoming unsharp. The surface of the mirror
must be very well polished (Franks and Breakwell, 1974). A very good optical
finish on fused quartz or glass is necessary. Polished metals are not sufficiently
flat. However, metal surfaces can be prepared by vacuum deposition on polished
quartz or glass.

Perfect single crystals which show total primary extinction are used as mono-
chromators. The importance of using perfect single crystals rather than mosaic
crystals is that they give specular reflection essentially without dispersion within
the narrow range of wavelengths allowed by dynamical theory. Mosaic crystals
degrade the luminosity of synchrotron radiation because they are dispersive and
only in special circumstances can a mosaic monochromator such as graphite be
successfully employed.

2. THE FOCUSING CONDITION

Rays emanating from a source § are focused by a curved mirror or monochro-
mator MO'M (Fig. 3) to a focus /. For a mirror the glancing angle of incidence
(0) must be equal to the glancing angle of reflection. For a monochromator it is
usual to cut the surface of the crystal at an angle o to the Bragg planes (Guinier,
1946) so that the glancing angle of incidence is 6 + ¢ and the glancing angle of
reflection is @ — ¢. One obtains

2/R = sin (8 —o)/v+sin (0 + o)fu (5)

and
V]

z[2{sin (6 — 6)/v + sin (8 + o)/u}, (6)
If ¢ = 0 (mirror or symmetrical monochromator) (5) becomes
2/Rsin@ = 1fu+1/v ™

For symmetrical curved crystal monochromators used with monochromatic
radiation the Bragg law imposes the additional constraint u =, whereupon
(7) becomes

u=7v=Rsind (8)

Equation (8) is the Johann focusing condition (Johann, 1931).

For a long mirror # and v are different for the two ends of the mirror so
that the mirror should be appropriately shaped in order to bring the ray bundle
to a focus at /. For exact on-axis focusing we require the general point 4 to lie
on an ellipse (with foci S and I) generated by

ut+v=uy+u 9
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FIG. 3. Focusing geometry: rays emanating from § are focused to 7 by the {11irror or mono-
chromator MOM'. The radius of curvature of the mirror (monochromator]_ls R,. The angle
of incidence on the mirror is @ + o, the angle of reflection is § — ¢. For a mirror o = 0.

For any curve not satisfying Eqn (9) the elements of the mirror will not focus
to the same point but will produce a caustic image (spherical aberration).

D. Detectors

Four kinds of detectors have been used with synchrotron radiation: X-ray
film, T.V. detectors, one-dimensional position-sensitive proportional counters
(PSDs), and multi-wire proportional chambers (MWPCs) as area detectors. '.['he
characteristics of the detector are important in determining experimental design.
In all cases where the detector or the environment of the detector imposes a
high background it is necessary to maximize intensity rather than flux‘. Detectors
have typically between 250 and 1000 resolution elements along an axis. .
X-ray film is the simplest detector to use: it has very good spatial‘ resolutu.)n;
quantum efficiency is high; data storage is easy. Measuring the optical density
(0.D.) is relatively simple and straightforward. The O.D. has virtuall).( the same
statistics as grain counting (Arndt, 1977). Unfortunately, the dynamic range of
film is limited which makes it difficult to use for low angle scattering. Other
disadvantages of film include the fact that it is difficult to use for time resolved
studies and that it has an intrinsic fog level equivalent to about 200 000 counts

mm™2.
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X-ray phosphors (ZnS(Ag)) in conjunction with high sensitivity television
tubes have been employed for the registration of X-ray scattering diagrams
(Arndt and Gilmore, 1979; Reynolds et al., 1978). Milch (1979) has used a
silicon intensified target vidicon (SIT-vidicon) coupled to the phosphor by a
fibre optics face plate to study the scattering from muscle. A raster of 256 x
256 picture elements (pixels) may be read out from an area of 25 x 25 mm. On
account of the small size of the detector and the relatively high spatial resolution
of the system one is required to use a small focal spot. Moreover, on account of
the relatively high dark current of this device one is forced to work with a high
intensity at the focal plane, which sets limits to the length of the camera.

A number of authors have used PSDs for measurements on muscle or muscle
fibres (Vasina et al., 1975; Vasina, 1976; Goody et al., 1976; Podolsky et al.,
1976; Baru et al., 1978; Faruqui and Huxley, 1978; Gabriel et al., 1978). Gener-
ally, such counters have a low background and good spatial resolution. Moreover,
the size of the counter is not critical, making such counters easy to employ.
One major drawback has been the saturation count rate. If the counter is
employed with an analogue readout system (time-voltage converter + voltage-
digital converter) the data rate, which is determined by the electronics, cannot
exceed about 50000 per second over the whole length of the counter,

Multi-wire proportional chambers are just beginning to find application in
small angle scattering (Baru et al., 1978b; Gabriel et al., 1978). At present the
total count rate is limited to 50000 (or with improved electronics to 10°) over
the whole area of the counter. To use such counters it is necessary to use a
relatively large specimen-detector distance (D >>2m) and to screen out the
centre of the scattering pattern when measuring the weaker parts.

I1. Small Angle Cameras for
Synchrotron Radiation

A. Remote Control

In the case of synchrotrons the high background radiation levels make it im-
possible to work in the neighbourhood of the direct or reflected beam. The
apparatus must stand in a shielded area which is not available to the experi-
menter when the beam shutter is open. Thus all normal manipulations such as
aligning cameras must be performed by remote control. For storage rings the
situation is somewhat better and it is possible to work within the shielding
walls. Even so the direct beam is never available to the experimenter so that

the primary optical elements which sit in the direct beam must be remotely
controlled.
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B. Curved Mirrors

In a number of experiments fused quartz (Spectrosil) has been employed as a
mirror (Franks and Breakwell, 1974). The general experience with synchrotrons
and storage rings has been that deposited metals are unstable when exposed to
the primary beam and they have not been widely used. However, Hastings et al.
(1978) have successfully employed platinum deposited on a fused quartz sub-
strate.

The relationship between the critical grazing angle (6.) and wavelength for
fused quartz is (Hendrix et al., 1979)

0 .(mrad) = 26,3Mnm) (10)

so that 6, is typically 3-4 mrad. Only wavelengths longer than those given by
Eqn (10) can be reflected. In this way the mirror acts as a high frequency filter,
which is particularly valuable for eliminating higher harmonics.

To accept the full vertical divergence of the synchrotron radiation at 20m
using a grazing angle of 3 mrad one needs a mirror of length 1,5m. Typically
the radius of curvature of the mirror is 2-4 km. Maintaining such a radius of
curvature over such a mirror length presents problems: if the mirror is thick
enough to be stable it is too thick to bend. Horowitz and Howell (1972) allowed
their mirror to bend under gravity. However, leaving a glass under strain, even
its own weight, leads to flow. Webb ef al. (1977) used a relatively thin mirror
and provided frequent adjustable supports. The European schools (Barrington
Leigh and Rosenbaum, 1974; Franks and Breakwell, 1974; Hendrix et al., 1979;
Haselgrove et al., 1977) have favoured segmented mirrors, each segment being
thick enough to be stable against flow but thin enough to be bent. For Spetrosil
a thickness of 15-20 mm seems to be the right compromise between stability
and flexibility for a 20 cm mirror segment. Longer segments would need to be
thicker to retain enough stability against flow and would thereby become too
inflexible to be bent. Mirror lengths of 20 cm can be relatively easily manu-
factured and polished: longer mirrors are very expensive.

Segmented mirrors need well machined mechanical holders to allow their
bending and mutual alignment. The bending of each segment is traditionally
achieved by pressure on pairs of steel pins separated by 15-20 mm sitting on the
back and front surfaces at each end of the mirror (Franks and Breakwell, 1974).
The pins on the front face are cut away in the middle to allow the X-ray beam
through. This method is not well suited for application to synchrotron radiation
since it necessitates placing a steel pin in the direct beam where it fluoresces
brightly. Harmsen and Rosenbaum (1979) have used metal plates glued to the
ends of the mirror segments to apply the couple. This method of bending has
the advantage that both concave and convex bending is possible. In this way
possible permanent distortions of the mirrors caused by flow can be compensated.
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The radius of curvature of each segment is so small that the detailed nature of
the bending achieved (e.g. circle or ellipse) is not important. The heights of the
mirrors must be adjustable to allow for their mutual alignment. The precision
of this alignment needs to be about 3 um (Rosenbaum, 1979) in order to overlap
the images produced by each mirror segment with a precision of one third of the
image diameter. The heights are adjusted to bring the images of the segments
into coincidence at the focus. The overall form of the segmented mirror is
therefore, operationally defined and will be elliptical. ,

C. Curved Crystal Monochromators

The following crystals have been used as monochromators for synchrotron
radiation: quartz (10,1 planes); silicon (111 planes); germanium (111 planes);
graphite (001 planes). The first three are perfect single crystals with very narrow
rocking curves which give specular reflection without appreciable dispersion. Of
the three germanium has the widest band-pass and has zero reflectivity for second
order components. Germanium is at present the most widely used material.
Graphite is a mosaic monochromator with a mosaic spread of ¢. 1/2°. A mosaic
monochromator can only be used if the distance between the monochromator
and the detector is very short so that the dispersion introduced by the mono-
chromator does not lead to a spreading out of the beam. Bending is often
achieved by applying couples to both ends of the crystal slab. When used with
synchrotron radiation it is important that no material should be present on the
front surface of the monochromator on account of fluorescence. In the DESY
camera (Barrington Leigh and Rosenbaum, 1974), steel pins were glued to the
back surface of the monochromator. Symmetrical couples at both ends of the
crystal were generated by pressure on these pins. A novel method of achieving
a cylindrical form has been used by Lemonnier ef al. (1978). Lemonnier and
collaborators make use of the fact that if a plate with the shape of an isosceles
triangle is held firmly at the base and a force is applied to the apex, the plate
takes up the form of a cylinder.

In the classical form introduced by Johann (1931) curved crystal mono-
chromators have a cylindrical shape and the source, crystal, and focus are
symmetrically arranged on the circumference of a circle. The crystal is bent
elastically to a radius of curvature equal to twice that of the focusing circle.
The simple Johann geometry has the restriction, for a monochromatic source,
that the object and image distance must be equal. This condition can be relaxed
by cutting the crystal at an angle o to the Bragg planes. The focusing conditions
are now the Guinier conditions. With synchrotron radiation, because it is poly-
chromatic, the Guinier conditions do not have to be obeyed — the penalty
incurred in departing from the Guinier conditions is an increase in the wave-
length inhomogeneity — but it is always necessary to obey Eqn (5) since this is
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an expression of specular reflection. For synchrotron radiation the monochro-
mator is employed near the Guinier conditions but usually far enough away to
produce some wavelength inhomogeneity.

On account of the asymmetric cut (g) the beam leaving the monochromator
will be narrower or wider than the beam entering the monochromator in the ratio

N,IN, = sin(8 + 0)/sin(8 — o) (11)

where N, and N, are the widths of the beam on the input and output sides of
the monochromator. For a monochromatic source the Guinier conditions mean
that the condition

NyINy = ufv (12)
must hold. Equation (12) shows that the angle of divergence before the mono-
chromator is equal to the angle of convergence after the monochromator, a
necessary condition for monochromatic radiation, but a condition which no
longer holds for a polychromatic source.

A further effect of the asymmetric cut is to alter the band-pass of the mono-
chromator. Dynamical theory (see Zachariasen, 1967, pp. 123-126) shows that
the integrated reflectivity (P,/P,), for Laue scattering (white source) from a
perfect crystal without absorption, is

PPIII{PO @ (‘?\"’v.:l'{ii\‘rnl)”2 (13)

(P[P, is the effective bandwidth of the monochromator).

Using synchrotron radiation, Eqn (12) can be disregarded and we may choose
a convenient value for ¢. In practice a value of four for N,/N, can be achieved
without incurring significant absorption losses. The bandwidth is thereby
decreased by a factor of two but this is more than compensated for by the
increase in intensity resulting from the compression of the beam. Since a passive
optical element cannot raise the luminosity, some compensating effect must
occur: the outgoing beam has more cross-fire than the incoming beam so that
the size of the image is enlarged towards the value it would have from a consider-
ation of the ratio v/u, thereby maintaining a constant luminosity.

A further effect is that the width of illuminated monochromator crystal as
seen by the detector through the guard slits is reduced. This is important when
considering the effects of parasitic scattering on the small angle resolution about
the direct beam.

D. Mirror-monochromator Camera at DESY

Barrington Leigh and Rosenbaum (1974, 1976) employed a grazing incidence
curved mirror to reflect and focus the beam in the vertical plane and a curved
monochromator to focus and monochromatize the beam reflecting in the
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FIG. 4. Diagram of the X-ray optical arrangement used by Barrington Leigh and Rosenbaum
(1974). The synchrotron radiation came through a vacuum pipe connected to the synchro-
tron en_ding in a beryllium window. The beam passed through two pairs of defining slits
set at right-angles and was reflected at glancing incidence by two 20 cm long fused quartz
mirrors. A bent quartz crystal monochromator (or later a germanium crystal) was used to
focus the beam in the horizontal plane. The guard aperture, specimen holder, backstop and
dett?ctor holder were mounted on an optical bench aligned with the reflected beam. All the
optical elements were mounted in helium-filled boxes to avoid air-scatter. All adjustments
could be remotely controlled. Optical settings were made with the help of three television
cameras.

horizontal plane. Typically specimen-film or specimen-detector distances
between 40cm and 120 cm were employed. The X-ray mirror consisted of two
20 cm sections 10 mm thick each which might be bent to focus the beam so that
movements for mutual alignment of the two mirrors were provided.

A bent quartz monochromator cut at 7° to the 10,1 planes focused the beam
in the horizontal plane. The beam was also compressed fourfold by the asym-
metric cut of the crystal. Subsequently, a germanium crystal cut at 7° to the 111
planes was substituted for quartz. The beam after the monochromator was
about 6 mm x 1,5mm and focused to a point less than 200 um. diameter. The
distance between the monochromator and the focus could be varied between
1 m and 3 m. A diagram of the small angle scattering camera is given in Fig. 4.
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The mirrors and monochromator were mounted on the end of a optical
bench along which the reflected beam travelled. All the components of the X-ray
camera (slits, specimen-holder, film-holder, counter-holder) were mounted on
the optical bench. The angle between the bench and the direct beam (26) was
fixed at 26° (A = 0,15 nm for quartz or germanium). Two sets of slits were used:
a set of primary slits in front of the mirror box and a set of guard slits in front
of the specimen. The apparatus was located in an experiment hall which could
not be entered when the beam shutter was open. Remote control was achieved
by the use of small d.c. motors fitted with reduction gears. Forty movements
could be controlled.

The mirrors were mounted in a helium-filled plexiglass case fitted with thin
mylar windows. The monochromator housing was also filled with helium. During
experiments all other X-ray paths were enclosed in evacuated plexiglass tubes
fitted with mylar windows. Using a germanium monochromator a flux of 7 x
108 photons s™ (A = 0,15nm) was routinely obtained from this camera when
the synchrotron was operating at 7.2 GeV and 10 mA. The gain in speed over a
small angle camera of similar performance used with a fine focus rotating anode
tube (Elliott G x 13) was about 40.

E. Mirror-monochromator Camera at NINA

Haselgrove et al. (1977) used a heavier construction method and the remote
control was carried out with stepping motors. A 2 X 20 cm segmented cylindri-
cally bent mirror (Franks and Breakwell, 1974) was used with a cylindrically
bent germanium monochromator cut at 7° to the 111 planes. The mirrors and
monochromator were housed in a helium-filled enclosure.

F. Mirror-monochromator Camera at SPEAR

Instead of the segmented mirrors favoured by the DESY and NINA groups,
Webb et al. (1977) used a single 1,2 m length of float glass. They used a silicon
monochromator cut at 8,5° to the 111 planes. A flux of 6 x 10® photons s™
was recorded at the focus with SPEAR running at 3,7 GeV and 20 mA. The
focus was about 0,5 x 0,5 mm?. The wavelength could be varied. The radiation
safety system at SPEAR deserves attention. A number of experiments are
arranged along each beam-line each taking a fraction of the beam. Each experi-
ment is situated inside a radiation hutch which has its own beam shutter and
its own set of radiation interlocks. Adjustments within a hutch must be carried
out by remote control when the beam shutter is open.
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G. Monochromator-mirror Camera at V'EPP-3

A variation on the mirror-monochromator theme has been used on the storage
ring V'EPP-3 for studies on muscle (Vasina et al., 1975). In this camera the
monochromator (quartz) was before the mirror and sat in the direct beam of
the storage ring. This appeared to give less scattering around the direct beam
than was experienced with the alternative arrangement. Since the source dimen-
sions were small Vasina and her collaborators were able to work close to the
source point and were able to achieve a high intensity with relatively small
optical elements.

H. Mirror-monochromator Cameras at DORIS

The first camera on the storage ring DORIS (Harmsen and Rosenbaum, 1979)
employs 8 x 20 cm mirror segments and a cylindrically bent germanium mono-
chromator (Fig. 5). Focusing is achieved by overlapping the reflected strips of
radiation from each of the mirrors giving a focus of 500-600 um in height
(the value depends upon the wavelength used since this affects the grazing
angle on the mirror). The whole optical bench, which is 4,2 m long, may be
rotated about an axis through the monochromator.

The optical elements are designed so that the direct beam, which is 250 mm
wide, may be divided into sections without the optics of the first section casting
a shadow on the following sections. This requirement imposes strong constraints
on the design of the mirror bender and mirror supports. The optical system
(8 mirrors and germanium monochromator) are housed in an evacuated chamber
which contains another mirror-monochromator system and also provides the
beam path for the direct beam. In a typical experiment on this camera 10'°
photons s™' have been obtained at 3,7 GeV and 10 mA.

A second camera of a similar kind has been set up on DORIS by Hendrix et al.
(1979). Hendrix et al. have used the same design of mirror-block as Harmsen
and Rosenbaum but have used a triangular monochromator. The optical bench
is constructed for a fixed wavelength. The flux measured with a calibrated
ionization chamber was 5 x 10" photons s™ at 0,15 nm (4,6 GeV; 20 mA).

I. Separated Function Focusing Monochromator at
SPEAR

Hastings, Kinkaid, and Eisenberger (1978) have used a 60 cm long platinum-
coated toroidal mirror in the symmetrical mode (# = v) to collect 6 millirad of
synchrotron radiation and focus it to a point. Shortly before the focus a double
crystal monochromator (germanium 111) is interspersed. The main advantage
of the system is that the wavelength may be altered without disturbing the focus.
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FIG. 5.Plan and elevation of the mirror-monochromator camera X11 at the electr{?n-
positron storage ring DORIS (Hamburg). The beam comes from the left, the tangent point
is about 15m from the camera. Each of the posts P1, P2, P3 and P4 may be adjusted in
height to allow for alterations in the height of the positron beam. In addition P4 may
traverse to allow alteration of the wavelength. An Eulerian cradle allows the monoch_ro—
mator (Mo) to be positioned at right angles to the mirrors (Mi) so that its axis of bending
is exactly at right angles to the beam direction. The monochromator can be focu_scd. The
eight segments of the mirror can be separately aligned so as to lie along an ellipse. The
fused quartz mirrors and germanium monochromator are housed in a vacuum enclosure.
There are three slits systems: one before the mirrors (81 1), one after the mirmr‘s and the
monochromator (Sl 2), and one (guard Si 3) in front of the specimen (sp). Sl 1 is the first
defining aperture, but on account of the considerable length of the_ camera (c. 6 r_n) and the
size of the source, the beam must be redefined by SI 2 at the beginning of the optical bench.
All movements connected with the monochromators and mirrors are remotely controllable.
The part of the optical bench behind slit S12 is outside the shielding wall and may be
observed directly.

The disadvantage of the present set-up is the equality of v and u which produces
an image the same size as the source.

I11. Extension of the Methodology
A. The Possibility of Using a Wider Band-pass

The band-width (AM) of a perfect single crystal monochromator is about 0,0004
at wavelengths around 0,15 nm (see Boeff eral, 1978). In order to record a
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scattering pattern with adequate angular resolution we require the contribution
of the intrinsic broadening to be small. In a practical situation a band-width of
0,01 would be quite adequate, so that existing monochromators appear to have
an unnecessarily small band-width. In theory it is possible to increase the band-
width by distorting the crystal so that the distance between Bragg planes varies
as the X-ray beam penetrates the crystal. This may be done either by mechanical
stress (i.e. bending) or by diffusing in foreign atoms. In a detailed theoretical
study Boeff et al. have shown that, for X-rays, not more than a factor of four
could be obtained by such methods. The bending radii normally used for mono-
chromators (10-20m) are not sufficient to cause any appreciable increase in
the band-width. In an unpublished study Rek and Harmsen have investigated
the effect of implanting foreign ions. By implanting boron in a perfect single
crystal of silicon they have increased the integrated reflectivity by a factor of
three. The topographic studies necessary to determine the extent of the damage
to the surface are in hand but the results are not yet available.

An alternative approach is the use of specially fabricated multi-layer mono-
chromators. This approach has been successfully used for soft X-rays (Haelbich
etal, 1979). For 0,15 nm X-rays the thickness of the layers may not be greater
than 5nm. With such small distances, diffusion across the layers becomes a
major problem,

A completely different kind of approach has been suggested by Stuhrmann
(1978) based on the use of mirrors and filters to define a wavelength interval.
The difficulty with this method for low angle scattering is that, although the
short wavelength cut-off can be well defined by critical external reflection from
a suitable mirror, the long wavelength cut-off can only be defined by absorption,
which is not sharp. Such an arrangement has the advantage of being non-
dispersive.

B. Towards an Optimum Design

The pioneer experiments on the use of synchrotron radiation as a source for
X-ray scattering are now eight years old. A considerable mass of experience,
some of it obtained under very difficult conditions, has been accumulated. The
X-ray optical systems must be simplified since, at present, they are too difficult
to set up and maintain and take too long to alter between experiments. Further-
more, the dictates of the experiment itself may well be such that the experi-
mental group does not have the resources to cope with a complex optical
system.

The new dedicated sources (Brookhaven, Daresbury) have a high luminosity
and small beam size. It should, therefore, be possible to operate without a
mirror, as has been done successfully at Novosibirsk (V'EPP-3) and at Orsay
(DCI). One relies on the small vertical divergence of the beam and its small size
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to produce adequate collimation in the vertical plane. This may be augmented,
as was done by Vasina et al (1976) by a single segment mirror after the mono-
chromator.

An alternative approach is to use a torroidal mirror (see Section B9). A sym-
metrical mirror can certainly be employed for low angle scattering if the source
is small enough and the luminosity is high.
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I. Introduction

In general, the desired output of a small angle X-ray scattering (SAXS) experi-
ment is the scattering curve (scattered intensity as function of the scattering
angle), represented in a digital data format, thus facilitating further data treat-
ment by means of a digital computer. This chapter will give basic information
. on established techniques which are, at present, available to the majority of the
experimenters wishing to recover the latent information of the scattering
pattern. As there are many implementations of one principle in actual use, this
review cannot claim to be complete.

Two physical magnitudes have to be translated into electrical signals: the
scattered intensity must be sensed by some radiation detector and the scattering
angle measured by some position-sensitive device as in SAXS, the angle is usually
represented by linear displacement (tangent of scattering angle) on account of

105



106 H. LEOPOLD

receiving
energy of

X-ray source
quantum absorbed

R

By

sample

collimator 4— F- - —-—-—=-=-—=—=—-—
signal output

linear
displacement
actuator

[}

cm:ﬂrol L » position
unit of receiving slit

%! Canate

step
program

FIG. 1. Implementation of the sequential mode of data collection.

the small angular range. Two different modes of data collection are in common
practice: the sequential and the parallel mode.

In the sequential mode (Fig. 1), a positioning device moves a receiving slit
into the desired angular position and the radiation detector senses the scattered
intensity at that position. In order to obtain the whole scattering curve, a
series of different angles must be positioned sequentially and the intensity
readings at every position must be recorded. The sequential positioning may
be performed manually, or automatically by a programmed device which also
encodes the actual position of the receiving slit into a digital word. Angular
accuracy with respect to resolution is high, as it depends only on the mechanical
precision of the positioner (goniometer). A very high dynamic range in intensity,
i.e. the ratio of the highest and the lowest intensity to be detected within one
scattering curve, can be covered, as the detector receives only the scattered
beam at one point of the scattering curve. In addition, the width of the receiving
slit can be altered in accordance with the intensity received at that position,
thereby enhancing the intrinsic dynamic range of the detector. Data collection
time may become long with this well established mode of operation, and some-
times prohibitive with samples of fast changing properties. As in the sequential
mode, the intensities at different angles are measured at different times — the
stability of the primary intensity is of importance. Therefore, the X-ray gener-
ator should show a very good long-term stability. Errors due to fluctuations
can be reduced by monitoring!"’ the primary intensity.

In the parallel mode (Fig. 2), a position-sensitive device senses the intensity
of the scattering pattern within the whole scattering range simultaneously.
This way, measuring time drops down dramatically and the primary stability
is of little importance. The angular accuracy and dynamic range of the scattered
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FIG. 2. Implementation of the parallel mode of data collection.

intensity is, in general, limited by internal features of the sensor. Examples for
such a sensor are the photographic film and various kinds of position-sensitive
proportional counters (PSPC). The film offers the advantage of economy and of
being a hard (non-volatile) copy of the scattering curve, but cannot deliver
electrical signals for further data treatment by simple means. On the other hand
the output signals of the PSPC can be converted into digital words representiné
the scattering curve. Cutting the scattering curve into several sections of dif-
ferent integral intensity and measuring these sections separately by means of
the PSPC mounted on a goniometer arm positioned for the corresponding
section can increase the angular accuracy and dynamic range of the PSPC to
almost any desired level.

Both modes of operation can be combined advantageously by using an
array of monolithic solid-state detectors or photodiodes,® one for each point
of the scattering curve. This results in accurate digital encoding of the position,
independent of the scattered intensity handled by the individual detector.

I1. Radiation Detectors

In Sf\XS, soft X-rays (photon energies between 5keV and 20keV) are used
as primary radiation. A suitable detector should respond to this range of energy,
should show up a good detection efficiency, low background and should be
f:apable of a high count rate. In the case of strongly scattering samples, especially
in close vicinity of the primary beam, rates in the order of 10°c.p.s. can be
_observed even when using a narrow receiving slit. If there is no monochromator
in the path of radiation, the detector itself should allow a certain degree of
monochromatism by electronic pulse height analysis.

In gas-filled and solid-state detectors, the ionizing property of radiation is
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used to produce a certain amount of electric charge per event. The mean energy
absorbed per one electron released amounts to approximately 30eV in gases
and approximately 3 eV in silicon. Therefore, as response to one 8 keV photon,
one can expect approximately 4 x 107'®coulombs per photon in silicon, or
4% 107" in a gas. By proper selection of the absorbing material and its
dimensions, almost all photons will be absorbed within the detector (counting
efficiency).

In the Si solid-state detector, the absorption takes place in a reversed biased
silicon diode. The charge is collected by the detector bias voltage. This kind
of detector is perfectly suited for SAXS, offering the best energy resolution
available at present. In general, a cooling system (liquid nitrogen) is necessary
to obtain an adequate thermal noise level on account of the low amount of
charge available per event.

The proportional counter (PC) is, in principle, a gas-filled absorption chamber
with two collecting electrodes. One is formed by the outer metal wall, the
other by the insulated inner wire. With a low bias voltage between the elec-
trodes, such a device will operate as an ionization chamber with no gas amplifi-
cation. The charge released by the absorption of a single low energy photon
is too small to be processed separately, but the average ionization current at
high photon flux can be used to monitor the primary beam.® If the electric
field strength in the chamber is raised by increasing the detector bias voltage
(1000-2000 V), the electrons released by the absorption gain sufficient energy
to cause ionization of the gas molecules. An avalanche of secondary electrons
results in increasing the primary charge by the factor A4, called the gas amplifi-
cation, selecting the correct bias A amounts from 10° to 10°. Due to the radial
field geometry, the avalanche is limited to a very small volume in close vicinity
of the inner wire, so that A4 is the same for every photon. This fact preserves
the proportionality between photon energy and charge collected, but the
amplified charge can be processed comfortably without the need of cooling.

A proper selection of the filling gas and the window material (for example
Xenon; mica) results in a perfect response of the detector to Cu, Co, Fe and
Cr radiation. Due to the absorption behaviour of the gas, the counter is insensi-
tive to photons of higher energy. Photons of lower energy are absorbed in the
window. This intrinsic selectivity facilitates the signal processing by avoiding
an overload to the amplifier caused by the higher energy components of the
spectrum of the X-ray tube operated with high anode voltage. Therefore, the
PC should be the first choice for detecting soft X-rays. A background of
lc.p.m. and a resolution time of 1us can be obtained. The energy resolution
of the PC is not as good as with the solid-state detector, due to the lower
number of primary electrons per photon and the statistic behaviour of the
avalanche, but it is definitely sufficient for SAXS.

Increasing the bias voltage above the proportional region destroys the
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relation between charge collected and photon energy. The detector is then
operated in the Geiger-Miiller region. The output pulses become uniform, but
independent of the photon energy, the recovery time will be in the order of
1 ms. Neither fact is desirable for SAXS.

In the scintillation detector, the scintillations emitted from atoms excited
by the passage of radiation are converted into electrical charge by means of a
photomultiplier. Using a sodium iodide crystal as scintillator, one phbto electron
is released from the photocathode for each 300eV of energy dissipated in the
crystal. The electron multiplication in the photomultiplier compensates for
this low sensitivity, but adds to the broadening of the energy resolution still
sufficient for SAXS. The scintillation detector shows up a uniform response
to a wide range of photon energies. It is able to detect soft X-rays with high
efficiency, but does not reject the high energy components of the continuous
spectrum of the X-ray source. This has to be done entirely by pulse height
analysis. A background of 3c.p.m. and a resolution time of less than 0,3 us
will be obtained.

In Fig. 3, typical energy resolutions of a solid-state, a proportional and a
scintillation detector are given. On an arbitrary scale, the curves show the
distribution of the pulse height corresponding to the charge received from the
detectors if irradiated by a monochromatic CuK, radiation. Note that the
counting efficiency is given by the integral over the curves, which is quite com-
parable for the three types of detectors.
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FI'G.. 3. .Response of a silicon solid-state detector (Si), a proportional counter (PC) and a
scintillation counter (Scint) with respect to quantum energy. Pulse height A corresponds
to the monochromatic radiation.
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FIG. 4. Signal processing with conventional (not position-sensitive) radiation detectors.

111. Detector Electronics

The electronic instrumentation around the radiation detector provides for a
correct detector bias, amplifies the detector’s signal, shapes it into energy
proportional voltage pulses and selects those corresponding to the desired
photon energy, thereby suppressing noise and polychromatic radiation. In
addition, a digital counter counts the selected events during a finite counting
time. The content of this counter divided by the counting time is the scattered
intensity in digital representation.

In Fig. 4, a schematic diagram of a typical instrumentation suitable for the
three preferred types of detectors is shown. The preamplifier, in close vicinity
of the detector to avoid electrical interference, converts the charge pulses into
voltage steps superimposed on a d.c. level depending on the average count rate.
The pulse shaper is necessary to produce pulses of definite length (approxi-
mately 1us) with a pulse height (referred to zero d.c. level) corresponding to
the height of the steps. In the main amplifier, often called the linear amplifier,
the pulses are amplified to the correct level needed by the single channel
analyser (pulse height discriminator). This unit responds only to pulses ranging
in pulse height between two preset levels. The difference between the upper
and the lower level is called the window width. Electronic monochromatization
is accomplished by setting the window in such a way that it covers the pulse
height distribution generated by the desired photon energy (refer to Fig. 3).
Pulses of lower height, i.e. originated by noise and electrical interference, are
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rejected, as well as pulses higher than the upper level generated by the high
energy components of the X-ray spectrum.

Care should be taken not to saturate the main amplifier by too large a rate
of these high energy pulses, especially when operating a scintillation or solid-
state detector. The bias of amplifying detectors (PC and scintillation) should
be kept as low as possible for long life time, stable amplification in the detector
‘good‘energy resolution and high permissible count rate. The bias (high volta ei
is adjusted in such a way that the desired pulses just override the noise levgel
Then the amplification factor of the main amplifier is selected, so that the.
centre of the distribution is situated somewhere below the middle’of the range
of the single channel analyser. The pulse height distribution should now be
mfzasured by scanning over the range, beginning at zero with a low window
width. The settings of the lower and upper levels can now be made where the
tail-ends of the distribution become horizontal. When in the course of normal
operation unstable intensity readings are encountered, the distribution curve
should be checked. A shift indicates an unstable bias, a broadening of the end
of the PC’s lifetime. In order to avoid a ground loop introducing unwanted
electrical signals, the detector’s ground should be electrically isolated from
the housing of the X-ray generator.

IV. Positioning

In the sequential mode of data collection, a positioning device is responsible
for the correct placement of the receiving slit, thereby defining the scattering
angle. In addition, the positioning device must provide information on the
actual position of the slit. A precision micrometer screw operated by hand, or
motor-driven, is commonly used as positioner. Operated in an open loop m(;de
the accuracy of the micrometer defines the accuracy of positioning. In thls:
case, the angle of rotation of the screw is taken as a measure for the scattering
a.l.lgle. For general SAXS work, a good micrometer fulfills the demands. A
higher accuracy and long-term stability can be obtained by forming a closed-
loop system in which the actual position is sensed by an accurate displacement
sensor (optical shaft encoder) and the operation of the screw is controlled
accordingly.®

For.automatic positioning, the micrometer screw is operated via a reduction
gear, either by a stepping motor or by any kind of motor and additional position
sensing. With the stepping motor, the number of stepping pulses to the motor
is the measure of the position. A lost pulse will shift the abscissa of the scattering
curve. To avoid this risk, positioning speed must be kept safely in a range where
the stepping motor responds to every pulse. With a free running motor, a
photoelectric or magnetic sensor produces a pulse for a certain incremental
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displacement of the receiving slit, usually for the smallest step size of an abscissa
program. The pulses can be counted and, after completion of a desired displace-
ment, the motor will be switched off and an additional brake can be activated,
thereby avoiding an overshoot. This mode of operating the screw releases the
stress on the motor and allows a high positioning speed.

V. Programmed Operation

Measuring a SAXS curve by hand in the sequential mode is a time-consuming
work, as the operator has to set a new position and wait for the completion
of the radiation counting at that position. Therefore, almost all SAXS goni-
ometers in use, at present, are operated automatically.

In this mode of operation, the scattering curve is scanned step-wise, according
to a program stored in a programmer. The step-program has to be selected
carefully, in accordance with the shape of the sample’s scattering curve and the
setting of the entrance and receiving slit, in order to optimize the accuracy of
measurement and the time invested. It is good practice to cut the total angular
range of the scattering curve into different sections (according to regions of
different slope) and to keep the step size (width of one step) constant within
one section. Then the total step-program can simply be worked out by defining
the individual number and size of steps in each section (step group), instead of
stating the abscissa of each measuring point. This mode of incremental pro-
gramming keeps the amount of data to be stored as small as possible. The
programmer itself can add up number and size of the steps and this way provide
a digital representation of the actual abscissa value.

The zero point of the abscissa of the scattering curve is situated at the centre
of gravity of the primary beam profile. The distance between this point and
the first measuring point must also be stored in the program in order to allow
correct evaluation of the abscissa.

In addition to this positioning, the programmer also has to control the
operation of the counter and the timer of Fig. 4. If a programmed position is
reached, the programmer starts the counter and the timer and has to wait until
it receives a signal indicating that the counting and data transfer cycle is com-
pleted. During data transfer, the programmer also transmits the actual abscissa
to the readout device.

A motor-operated micrometer can be relatively easily interfaced to an on-
line minicomputer or microprocessor system, thereby providing for the necess-
ary hardware. This computer can also take over the counter, timer and readout
function. In fact, one can see various “home-made” minicomputer installations
operating quite well in different laboratories.

A SAXS programmer based on the outlines given above is described in
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reference (5). Step widths of 5, 10, 20, 50, 100, 200, 500, 1000, 2000 or
4000 microns (1um corresponds to approximately 4,5 x 1076 radians with the
Kratky camera) and step numbers of 1, 2, 4, 5, 8, 10, 15, 20, 30 or 50 can be
selected in up to 7 groups. The first measuring point can be offset up t09999 um
with respect to the centre of the primary beam, and a definite number of runs
of the whole curve may be programmed. The restriction to ten different step
widths and step sizes allows the use of numerical switches to store the whole
program in a non-volatile manner and, therefore, makes programming very
comfortable without any effort in software. The experience on more than 100
such instruments* shows that the variety of step sequence fulfills the needs in
the different fields of SAXS.

The readout device of Fig. 4 may be a printer, a punch tape unit, or magnetic
data storage device (magnetic tape, floppy disk). It finally collects and stores
the digital data generated by the measuring system in the course of one or more
exposures. Of course, the measuring system may also be directly connected
to a large-scale computer for further data treatment without intermediate
storage of the experimental data, but there is no stringent reason to do 50, as
the data rate generated by a sequentially scanning SAXS installation is low. A
decision should be based on the local conditions.

The instrumentation necessary to implement a complete detector system
operating in the sequential mode (detectors, signal processing units, digital
counters and timers, control instrumentation, data storage devices) are manu-
factured by a considerable number of companies operating in the field of
analytical or nuclear instrumentation, therefore no recommendation is given.
If a measuring chain should consist of parts of equipment originating from
different manufacturers, the problem of interfacing should be cleared up before
purchase.

V1. Photographic Methods

The parallel mode of collecting SAXS data can be implemented by using the
photographic film as a position-sensitive radiation detector. This method was
common practice in the early days of SAXS, but became obsolete, due to the
competition of pulse counting detectors operated in the sequential mode. The
inherent advantages of the parallel mode were deliberately exchanged against
higher dynamic range, better reproducible response of the counting detector
and the ease of obtaining an electrical representation of the scattered intensity
without the need for measuring optical density.

* Manufactured by A. Paar KG., Graz, Austria.
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Nowadays, changes seem to have occurred again. The film material is
definitely better than that of 1950, the effect of X-ray on photographic material
is well understood and measurements have been made comparing photographic
methods to step scanning and position-sensitive pulse counting detectors.‘® The
dynamic range of the film is limited on the high intensity side by the saturation
of the AgBr layers and the fog on the low intensity side. While this ratio
(20:100 dependent on the speed of the film) will be sufficient for a number of
SAXS problems, the fog forms an absolute limit when sensing low intensities
which could be detected with good signal to noise ratio, by means of a pulse
counting detector. Due to the fog density, present day X-ray films can be
used with exposure levels larger than approximately one quantum per ten
micrometers squared of Cu-radiation. Within the dynamic range, the linearity
of the response of the recorded intensities (including errors in densitometry)
is obtained in the order of 1%. This suggests that measurements of the absolute
intensity also can be made if on each film a standard exposure is included.
The spatial resolution of the film amounts to a few micrometers. Measuring
the optical density, the total information stored on the film must be recovered.
With slit geometry, the height of the receiving slit of the densitometer perpen-
dicular to the direction of the scan must correspond to the height of the
exposure on the film in order to average over the contributions of each elemen-
tal length of the focal line. If this height of the receiving slit cannot be obtained,
due to experimental limitations in the densitometer, multiple scanning!” (the
receiving slit shifted in lateral direction after each scan) will give good results.

An actual decision can be made by comparing the background scattering
intensity of the sample (solvent) to the exposure corresponding to the fog
density. If the background times the exposure time is in the order of the fog
exposure (as with organic solvents and slit geometry), the film will be com-
parable to a position-sensitive pulse counting detector. For pinhole collimation,
however, with its low primary irradiation, the reduction of the pattern’s intrinsic
signal to noise ratio due to the fog will be, in many cases, prohibitive.

V1. Position-sensitive Detectors

Like the photographic film, a position-sensitive detector receives the integral
distribution of the scattered radiation over its total range, but provides, for
a two-dimensional electrical signal representing the scattered intensity, a func-
tion of the scattering angle.

At present, the position-sensitive proportional counter (PSPC) is favourable
with position encoding, according either to the RC-line method® or the charge
division method.® In the RC-line method, a gas-filled proportional counter
is used with a resistive inner wire (mostly carbon coated quartz fibre). The
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FIG. 5 Signal processing with position-sensitive proportional counter. The RC-line method
of positional encoding is shown.

wire and the detector’s distributed intrinsic capacitance form a resistance-
capacitance delay line which makes the rise time of the voltage pulses sensed
at the ends of the detector dependent on the location of the primary ionization.
As shown in Fig. 5, two preamplifiers and pulse shapers convert the difference
in rise time into a time-lapse translated into a voltage by means of a time-to-
amplitude converter. In addition, a sum channel, fed by a signal representing
the quantum energy of the absorbed photon, enables the gate of the time-to-
amplitude converter in case of the advent of a photon of the desired quantum
energy. Thus, the rate of the output pulses of the converter represents the
intensity at a position indicated by the height of the pulse. The frequency dis-
tribution of these pulses plotted against the pulse height, therefore, is identical
to the scattering pattern. It can be visualized on the scope of a multichannel
analyser and stored on magnetic tape or disk.

In the charge division method of positional encoding, the resistive inner
wire is terminated by two charge-sensitive amplifiers, forming a virtual ground
at the detector’s ends. The total charge resulting from one absorption of a
photon is divided into two fractions, according to the ratio in distance given
by the position of the impact. These fractions appear as output signals of the
two amplifiers. The sum of the amplitudes of the two signals represents the
quantum energy of the photon (as in ordinary proportional counters). The
ratio between either fraction and the sum denotes the position of the impact.
As the fractional signal and the sum originate from the same ionizating event,
the accuracy of positional encoding is not limited by the statistical behaviour
of the gas amplification within the counter. At present, it seems that there is
a preference for the RC-line method, as the electronic signal processing can
be performed more easily. The advent of fast dividing analog-to-digital con-
verters of high resolution may introduce a change in the future.

A weak point in the PSPC is the carbon fibre, sensitive to overload. An
unfiltered primary beam in the Kratky camera can burn the coating of the
fibre, making a replacement necessary. A metal inner wire,"'” instead of the
carbon fibre, overcomes this drawback. Another type of PSPC, the so-called
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“back gammon detector”, ') divides the charge into fractions dependent on
the position of the impact by means of two adequately shaped cathodes and,
therefore, dispenses with the resistive wire.

In comparison to a goniometer-operated SAXS system, the application of
a position-sensitive detector shortens the time of exposure by up to two orders
of magnitude in cases of samples showing a scattering curve of moderate
dynamic range (small particles in solution, partially oriented samples) and
lowers the radiation dose imposed on the specimen accordingly. Samples with
time-dependent properties can be investigated within the necessary short time.
On the other hand, new problems arise when operating a PSPC, not encountered
in the sequential mode: spatial resolution of the detector, error in positional
encoding, deviation from uniform response at different positions and count rate
capability. As an example of the performance of position-sensitive proportional
counters using the RC-line method, Table 1 shows the specifications of two

TABLE 1

PSPC | PSPC 2
Active volume 50 mm 100 mm long

10 mm 8 mm wide

3 mm 5 mm deep

Spatial resolution
(FWHM) 70 um 250pum
Detection efficiency
including window 90% 80%
Processing time
including electronics 10 us 2us
Positional error as
percentage of length 0,5% 1%
Uniformity of response 2% 3%

commercially available detectors sensing Cu-radiation (8,04keV). Position-
sensitive proportional counter 1,4? distributed by Siemens AG, W. Germany,
is an open device using slowly flowing (10ml min~') Xenon at high pressure
(approximately 1,5 x 10°Pa) as detection gas and a carbon coated quartz fibre
as anode. Position-sensitive proportional counter 2,*¥ made by Technology
for Energy Corporation, U.S.A., is a sealed device with a stainless steel anode.
This PSPC uses a gas mixture of 97% Xe and 3% CH, at 2,2 x 10° Pa. The count
rate capability can be estimated from the processing time. With respect to
coincidence loss, the reciprocal of the tenfold processing time may be regarded
as the maximum count rate of randomly occurring photons uniformly distri-
buted over the PSPC length. This results in 10%c.p.s. for PSPC 1 and 5 x 10* for
PSPC 2. The count rate capability of the PSPC limits its applicability in SAXS
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installations with high intensity primary sources compared to ordinary propor-
tional counters which tolerate at least the same count rate at one single point
of the scattering curve. Some other manufacturers of RC-line encoding PSPCs
are: Ortec Inc., U.S.A., Tennelec Inc., U.S.A., Rigaku Corp., Japan and Marconi-
Elliott, Great Britain.

As an example of a PSPC using the charge division method of positional
encoding, the specifications of a detector according to reference (11) called
LETI, model A, made by Instruments SA, Division Jobin-Yvon, France, will
be presented. With an effective length of 55 mm, the spatial resolution (FWHM)
amounts of 125 um. The uniformity of the detector’s sensitivity is within 2%,
the error in position encoding 0,5%. The filling gas is a mixture of 90% Xe
and 10% CH4 at atmospheric pressure in a sealed housing. The quantum
efficiency to Cu-radiation amounts to 50%. The total processing time of 30 us
results in a count rate capability of 3000 c.p.s. A test-report on this counter,(!¥
operating in a Kratky system shows that even this low rate capability yields a
considerable reduction in experiment time.
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‘The theoretical basis of small angle scattering and the techniques for obtaining
experimental scattering curves have been described in the two preceding chap-
ters. The experimental data have to be transformed to correspond to an ideal
experimental design, in order to be interpretable with the aid of the available
theories. The mathematical procedures and the computer programs which are
necessary for these transformations are discussed in this chapter. A survey of
the most important general methods for the interpretation is given in the
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following chapter. This division into two chapters is not meant to indicate that
data treatment and interpretation are two independent problems. On the con-
trary, these two chapters plus the two preceding ones constitute a unit as they
are closely related.

The methods presented in these two chapters are predominantly developed
in the field of investigation of biological macromolecules in solution but most
of them can be used in all fields of application. Additional methods developed
for special applications are described in the several chapters of the section
“Applications™ of this book. The contrast variation technique is described
seperately in Chapter 6.

The following questions have to be answered in the chapters “Data Treat-
ment” and “Interpretation”.

How are the experimental results related with the general theory?

What is the content of information of the experiment?

Which results can be determined directly from the data?

How can the experimental situation be optimized?

How can additional information about the system under investigation be taken
into account?

This chapter will be mainly restricted to the presentation of the existing
analytical and numerical methods while the aspects of interpretation and a
final conclusive discussion will be given at the end of the next chapter.

The mathematical description of the experimental situation (Section I of
this chapter) is the basis for the preliminary data treatment (Section II) and
for all correction procedures which are described in Section III. Normalization
techniques and methods for the evaluation of molecular parameters are reviewed
in Section IV; Section V deals with the calculation of scattered intensities and
distance distributions of model systems.

I. Mathematical Description of the Experimental Effects

The ideal experimental design, i.e. point-like primary beam with high energy,
point-like sample and detector, can never be attained in a real experiment
(Chapter 3). The various effects caused by the most common experimental
design are discussed separately in the following sections.

A. The Collimating System

The collimating system used in the majority of applications is a slit system
whose slit length (or slit height) is very large compared to the slit width perpen-
dicular to the slit length. Let Io(x, r) be the two-dimensional intensity
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distribution of the primary beam entering the sample, where ¢ is the coordinate
from the centre of the primary beam in the direction of the slit length and x
is the coordinate perpendicular to ¢. Simple geometrical considerations show
that the intensity distribution Io(x, ) can be written as a product of two inde-
pendent distributions, such as

Io(t,x) = P(t)- O(x) )

This independence is true with sufficient accuracy for most practical appli-
cations. The two-dimensional collimation effect can then be split into two one-
dimensional effects.

1. SLIT LENGTH EFFECT

Let us assume for the moment that the profile Q(x) is infinitely narrow.
The lineshaped primary beam with its intensity distribution P(z) causes a
smeared scattered intensity /(m). The experimental abscissa m measures the
distance between scattered beam and centre of the primary beam in the plane
of registration, m is related to the reduced angular variable / and the scattering
angle 20 by the relations

. m
h = 4—;-sin0 (2a) and 2sinf = " (2b)
The combination of Eqns (2a) and (2b) gives
A-a
= ——h 3
m = 3)

with X\ being the wavelength of the radiation and « the distance between the
sample and the plane of registration.

The smeared intensity I(m) is the integral over the theoretical intensity
I(m) weighted by the intensity function P(f). The argument of the integrand
results from a simple geometrical consideration by Guinier and Fournet (1947a,
b) and (1955) (see Fig. 1a).

imy = [ P@)I/em* + ) dr = 2 f: PO INm>+ ) dt (4)

The intensity distribution P(¢) can always be transformed into an even function.

Equation (4) assumes that the primary beam entering the sample has no diver-
gence in the direction of the coordinate ¢. Therefore it is necessary to measure
the intensity profile as far as possible from the sample (distance a*), normally
in or near the plan of registration (distance a). This profile can be used as a
virtual parallel profile in the sample plane (Fig. 1b). If the distance 4* is not
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7 (a)

Plane of Registration

(b)

FIG. 1. (a) Geometrical description of the slit length effect. (b) Definition of the intensity
profile P(¢) as a virtual parallel beam.

exactly equal to the distance a used for the registration of I(n), the profile
must be subjected to the linear transformation
P(t) = Pp(k-t') )
with k = afa™.
2. SLIT WIDTH EFFECT
This effect is caused by the intensity profile Q(x), i.e. by the extension of

the primary beam perpendicular to the slit length. It can be described by the
convolution integral

I

fem) = [~ 0@y tom—x)dx = O = o1 ©®

The function Q(x) cannot be assumed to be an even function. The profile
O(x) should be measured in the plane of registration for the same reasons as
discussed for the slit length profile.
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B. The Detector

The detector window has a finite size. The limiting detector slits are adjusted
according to the size of the primary beam profiles P(¢) and Q(x) (see Chapter 3).
Again, we assume that the slit length to be large compared to the slit width.

1. DETECTOR SLIT LENGTH

The detector slit length has the same effect as the extension of the primary
beam P(t). However, it is not necessary to evaluate a new smearing integral.
One can show that it is possible to combine the two effects (detector slit length
and P(t)) by a convolution of the profile P(¢) with a step function corresponding
to the detector slit length. This convolution is already performed experimentally
if the profile P(z) is recorded with the same detector window.

2. DETECTOR SLIT WIDTH

As with the detector slit length, the detector slit width causes an additional
smearing effect. Since the primary beam profile Q(x) is usually measured with
the same detector slit width as the scattering curve, it is not necessary to make
additional corrections.

3. DEPTH OF THE DETECTOR

If a position sensitive counter is used it results in an additional smearing effect
if the X-rays do not enter the counter perpendicular to the wire. The degree
of smearing is influenced by the vertical projection and by the absorption
effect (Henne, 1976). The smearing integral is given by

m

Iy(m) = j m')-Zm —m', m') dm' Q)

(1-dla)m

d is the total depth of the counter and the kernel Z is given by
= M1 —erdy1 | o~ waim)y
Z(y,m) =~ (1—e™)"|e ®)

with u being the absorption coefficient. The width of the smearing integral (7)
is given by m-dfa. This is a relative small number for usual configuration
(@~20cm, d~0,4cm), and the effect can therefore be neglected if the
measurements do not reach into the wide angle range.
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C. Wavelength effect

The smearing effect caused by a wavelength distribution W()') in the primary
beam can be described by the wavelength integral (Guinier and Fournet, 1955)

I(m) = j: W()\')-I(%)dk' ©)

where X' =A/Aq and A, is the mean wavelength used in Eqn (2a). From this
equation we see that the wavelength effect is zero for 2 = 0 and that the effec-
tive smearing interval increases linearly with the scattering angle. The accurate
experimental detemination of W(A") is rather difficult, and the wavelength
distribution is therefore often approximated by a sum of two delta functions

(K, and Kg-line, see Zipper, 1969). This is only a rough approximation. It does

not take into account the contribution of the white radiation in the region
between 1,5 and 2,0 A, which is detected with high efficiency by the counter.
The wavelength profile is of great importance for neutron small angle scattering
where the half width of the wavelength distribution is usually around 10%.

D. Combined Formulae

If the experimental set-up is such that detector depth effects can be neglected,
the correction for the remaining three effects can be performed with one single
formula:

PN il N, (Mm =X+ )

Ioyp(m) = 2 Le _[0 fo Q(x)'P(t)-W(h)'I(—————f— d\' dr dx
(10)
In the application of this formula the integrals have to be computed in the
sequence: wavelength integral, slit length integral and slit width integral. If we

want to connect the experimental scattering curve directly with the distance
distribution p(r), we have to consider the Fourier integral

sin (hr)
hr

sin hr
hr

B - _ -
1) = 4n |20y r dr = a1 | p) dr (11)
where p(r) = y(r) - r*.

Insertion of Eqn (11)into Eqn (10) yields:

L) = 8n [dx [ar [“an fo'”d,Q(x).p(t)W(x)p(,)s"‘%‘* (12)

with B=r-[(h —x)*+ ¢*]V?/\". The experimental variables ¢t and x have to
be reduced variables like 2 according to Eqn (2). The angular dependence of
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FIG. 2. Angular dependence of the ranges of integration of the smearing integrals: o-0-o slit
length effect (slit length L), X-X-X slit width effect, o-o-o wavelength effect.

the smearing effect of the particular functions P(¢), O(x) and W(\') can be
illustrated with the dependence of the effective range of integration on the
angular position. The effect of slit length smearing decreases with increasing
m-value as we can see from Fig. 2 where the P(f)-function is assumed to be a
step function with a full width of 2.

The slit width effect is represented by a convolution integral and is therefore
independent of the actual position. Contrary to the slit length integral, however,
the integration runs from smaller m-values over the actual m-value to larger
m-values. This gives rise to an enlargement of the real smearing effect near
the central main maximum.

The wavelength effect (and the detector depth effect) increases linearly with
the scattering angle and is zero at the origin. Scattering curves of quasi periodic
shape (scattering function of a sphere: 7, ~#/R) should not be measured
with profiles Q(x) and W()") with an effective width equal to the period 75,.

The general influence of all three smearing effects on the shape of the
scattering curve is, that the curves are smoothed, i.e. maxima and minima are
less pronounced and the slope of the curve is changed.

IL. Preliminary Data Treatment

In most cases one is interested in the structure of particles in solution. The
particle scattering curve is obtained by subtracting the scattering curve of
the solvent (blank scattering) from the scattering curve of the solution. The
concentration effect (interparticle interferences) is usually eliminated by con-
sidering a concentration series, i.e. one determines the scattering curves of
several solutions of decreasing concentration. The extrapolation to zero concen-
tration leads to the particle scattering curve free from concentration effects
(see Chapter 7). The repetition of each measurement several times helps to
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avoid systematic errors. Thus, one ends up with a large number of scattering
curves which have to be averaged, extrapolated and subtracted taking into
account the statistical significance of each individual curve. These preliminary
steps of data reduction do not contain difficult mathematical operations, and
they can easily be performed with a computer program (see Zipper, 1972).

I11. Smoothing, Desmearing and Fourier Transformation
A. Introduction

The experimental scattering curve I, (m) cannot be determined for the whole
of reciprocal space (0 <h <o), At small h-values the measurement is limited
by the unscattered primary beam, and at large h values by the progressive
decrease of the signal to noise ratio. The scattered intensity is usually deter-
mined at discrete points (defined by the fixed position of the conventional
counter or by the channel number of the position sensitive counter). According
to counting statistics, the standard deviation of each data point is equal to the
square root of the number of pulses registered by the counter.

The main target of the data processing is to obtain the two functions I(h)
and p(r) from the experimental scattering curve I, (h) represented by M data
points. This situation is illustrated schematically in Fig. 3.

In the following, we shall restrict ourselves to non-oriented particles, for
example particles in solution. In such a system, a large number of randomly
oriented particles contribute to the physical scattering process, and the resulting
spatial average leads to a loss of information: the three-dimensional electron
density distribution p(r) (describing the whole structure of the particle) is
thereby reduced to the one-dimensional distance distribution function p(r).
We ‘“‘observe” the particle indirectly by means of scattering. This physical
process of scattering can be described mathematically by a Fourier transform-
ation (transformation T,, Eqn (11)), which results in the unsmeared scattered
intensity f(h). Allowance for the various collimation effects (transformations
T, —T,) leads to the smeared scattered intensity; the experimental data points,
Ioxp(h) are affected by the statistical error e(h).

The target of data treatment is to obtain the functions /(#) and p(r) from the
finite number of observed intensity values, i.e. to find the inverse of the trans-
formations T, to T,. The procedure has to allow for the statistical accuracy
(smoothing, least squares approximation), has to solve the desmearing problem
and has to perform the Fourier transformation. These problems can be solved
in several steps (multi-step procedures) or in one-step (single-step procedures).
The smoothing and desmearing operations are performed prior to the Fourier
transformation in the multi-step procedures. The problem of error accumulation
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is usually less severe in single-step procedures. In any case, the correct sequence:
slit width, slit length and wavelength desmearing has to be observed (Glatter
and Zipper, 1975). The essential problems of the desmearing procedure are
the unavoidable smoothing of statistical fluctuations and the termination effect.
The termination effect is also the main problem in Fourier transformation, since
the direct inverse transformation T;' requires in principle the knowledge of
the scattering function for an infinite angular range. Any extrapolation of the
scattering function may introduce systematic errors. Nevertheless, extrapolation
is often performed towards zero angle to enable the estimation of several mol-
ecular parameters.

The number of desmearing procedures described in the literature is large
and is still increasing (Guinier and Fournet, 1947a, b; 1955; Kratky et al.,
1951; Kratky et al., 1960; Schmidt and Height, 1960; Syne&ek, 1960; Heine
and Roppert, 1962; Heine, 1963; Fedorov et al., 1965; Schmidt, 1965;
Shchedrin and Feigin, 1966; Taylor and Schmidt, 1967, 1969; Lake, 1967;
Hoffeld, 1971; Vonk, 1971; Damaschun et al., 1971; Patel and Schmidt, 1972;
Glatter, 1972; 1974; Vonk, 1975; Jaeneke, 1975; Glatter, 1977b; Mazur, 1977;
Schollmeyer et al., 1977; Deutsch and Luban, 1978a, b; Moore, 1980). In
addition, there exists several papers dealing with the smoothing problem (Dama-
schun et al., 1968; Oelschlaeger, 1969; Briimer and Wenig, 1972).

B. Multi-step Procedures
1. SMOOTHING AND DESMEARING

Historically, the first desmearing procedures were developed for the most
important effect, the slit length effect. Guinier and Fournet (1947a, b; 1955)
described a method which assumes an infinitely long primary beam. This
assumption holds if the profile P(¢) is constant within the region 7 > h* where
the scattering intensity I(h) with & > h* is negligibly small. The smearing integral
equation is solved by an integration procedure with the integrand being by
the first derivative of the smeared scattering function.

_ 1 =R+ dre
I = —— fo TN

Estimation of the first derivative, however, is a serious problem, which necessi-
tates a preliminary smoothing of the data.

Kratky et al. (1951) have extended the above method to include P(¢)-
functions of trapezoidal shape.

Heine and Roppert (1962) have adapted this method to be carried out by
a digital computer. A technique for the preliminary elimination of the slit

(13)
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width effect was described by Kratky et al. (1960). This method requires sym-
metrical Q(x) functions and the accuracy increases for decreasing width of
the O(x) function.

The procedure of Schmidt (1965) and Taylor and Schmidt (1967) is a widely
used improvement of Guinier’s method. It assumes a Gaussian P(f)-function,
which allows partial integration and avoids the computation of the first deriva-
tive. The smoothing of the experimental data is performed by a piecewise
approximation by polynomials. Experimental data have to be provided at
relatively small equidistant intervals with equal accuracy. There is some loss of
information at the innermost scattering points.

Damaschun et al. (1968, 1971) were the first to use the sampling theorem
of Fourier transformation as a basis for a smoothing procedure. Their method
takes an estimate of the maximum intraparticle distance as a physical smoothing
condition. The desmearing is performed in a second step with the procedure
of Heine and Roppert (1962).

Lake (1967) has described an iterative desmearing method, which is very
simple and allows arbitrary slit functions P(t) and O(x). Preliminary smoothing
of the data is necessary, and the results are not always of sufficient quality
(Schmidt, 1967; Walter et al., 1974).

A procedure for the correction of the wavelength effect caused by the Kp-
line has been developed by Zipper (1969). His method assumes a wavelength
profile which is composed only by the K, and the K line.

The first attempts to use a problem-specific function system for the approxi-
mation of small angle scattering ‘curves was undertaken by Hoffeld (1968).
The innermost part of any scattering curve can be fitted perfectly by the
Hermite-function with index zero which is a Gaussian function. Unfortunately,
the approximation of the residual part by a series of Hermite functions shows
poor convergence. ‘

Several important new aspects are included in the procedure of Schelten
and Hoffeld (1971). This constrained weighted least squares technique, allowing
arbitrary primary beam profiles, results in an approximation function with
minimized second derivative. Cubic B-spline functions are used as a basic set.
The smoothing effect is excellent, but the minimization of the second derivative
has the danger of an uncontrolled flattening of maxima, in particular of the main
maximum at zero angle. This effect increases with increasing statistical error.

The integral Eqn (4) is reduced to a linear system of equations in the pro-
cedure of Vonk (1971). Arbitrary slit length profiles P(¢) can be corrected, but
the routine does not correct the slit width effect. A weighted approximation
of the data is performed by a reduction of the actual number of unknowns
calculated in one step of the solution. The termination effect and artificial
oscillations caused by the statistical error are sometimes not negligible.

The desmearing procedure for the slit length effect developed by Strobl
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(1970) has no restrictions to the primary beam function P(t). The error propa-
gation is discussed, but it is not a weighted least squares procedure. The method
is appropriate for scattering curves containing sharp reflections, since the
primary result is the integrated scattering function.

An improvement of the iterative method which overcomes most of the
problems involved in Lake’s procedure was described by me (1972, 1974).
This new iterative method allows the correction of both geometrical effects
and of the wavelength effect in one single step for arbitrary weighting functions
P(¢), O(x) and W(\'). The procedure has an implicit smoothing routine, the
degree of smoothing is dependent on a freely selectable smoothing parameter
and on the accuracy of the data. The iterative process is controlled by a weighted
least squares condition. The number of necessary iterations is estimated by a
convergence criterion, the termination effect is minimized. The method can
be used for arbitrary types of scattering functions since no special mathematical
function system is used. The accuracy of the result is comparable to the one
of the experimental data, but it is impossible to perform a rigid error propa-
gation analysis. Slight artificial oscillations may occur in the innermost part
of the desmeared scattering function. A modification of this method for
scattering curves with discrete reflexion was described by Jaeneke (1975).

The recent method of Deutsch and Luban (1978a, b) gives an exact, explicit
solution of the slit length effect for arbitrary weighting functions. The slit
length weighting function P(¢) has to be transformed by an integral equation.
The solution is found through a Laplace transformation. This has first been
done by Fedorov et al. (1968), who found that this procedure is not very useful
for numerical calculations (Schmidt and Fedorov, 1978). Deutsch and Luban,
who apparently were not aware of Fedorov’s work, rediscovered the Laplace
transform solution. The scattering curve must be extrapolated to 2 = o0 in order
to minimize truncation errors, and must be very carefully extrapolated to
h=0. For the latter extrapolation it is necessary to have zero slope and an
“accurate” measure of the second derivative (radius of gyration) at h = 0;
otherwise, unreasonable scattering functions are obtained (Schelten and
Hendricks, 1978).

2. FOURIER TRANSFORMATION

A conventional Fourier transformation can be carried out after desmearing
with any technique, in order to compute the distance distribution function:

p(r) = 2—;—2 [ 10+ Gy sim (o (14)

Here, the main problems are the termination effect and the influence of a
remaining background scattering. These may cause such strong artificial
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oscillations (“Fourier ripples”) in the p(r)-function that it becomes useless.
The termination effect can be reduced by extrapolations of the scattering curve.
The Guinier approximation can be used for the extrapolation to zero angle if
the first data points are measured down to very small angles. Another extra-
polation technique (Damaschun and Pirschel, 1971a, b) makes use of the
Fourier sampling theorem and of an estimate Dy,,, for the maximum distance
D of the particle. This method makes use only of the scattered intensities at
the points hp = k * m/Dpay, no least squares approximation is involved to use
intermediate points registered in the experiment.

The extrapolation to large angles can sometimes be performed with Porod’s
law (see Eqn 42 in Chapter 2). An artificial temperature factor (¢ ™#*") should
not be applied to damp the Fourier ripples, since it leads to a loss of infor-
mation. It will be demonstrated in the next part of this chapter that the termi-
nation effect can be minimized with the help of the Indirect Fourier Trans-
formation method.

C. Single Step Procedure — Indirect Transformation Method

The Indirect Transformation Method (Glatter 1977a, b) combines the following
demands: single step procedure, optimized general function system, weighted
least squares approximation, error propagation, minimization of the termination
effect and consideration of the physical smoothing condition given by the
maximum intraparticle distance. This smoothing condition requires an estimate
Dy« as an upper limit of the largest particle dimension D:

Dyax =D (15)
If such an estimate can be given it follows that
p(r) = 0 for r=2Dpya

for scattering curves which are extrapolated to zero concentration (no inter-
particular interferences). For the following it is not necessary that the equality
in Eqn (15) holds, i.e. Dy, need not to be a perfect estimate of D.

The function system should be defined in this range 0 <7 < Dpax and a
linear combination

N
pal) = Y () (16)
v=1
is used as an approximation to the distance distribution function p(r).

Let N be the number of functions and c, be the unknowns. The functions
¢,(r) are chosen as cubic B-splines (Greville, 1969; Schelten and Hofifeld, 1971).
They are defined as multiple convolution products of a step function and they
represent curves with a minimum second derivative.
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Each individual function g, can be subjected to the transformations T'; to T.
The intermediate result after the transformation T, represents scattering inten-
sities without collimation effects corresponding to a distance distribution
represented by ¢, (r):

Wy (h) = Tig,(r) 17)
Smeared intensities result after execution of all transformations
Xo(h) = T4T3T,Tyy(r) = TaT3 T2V, (h) (18)

The functions x,(h) constitute an optimized system for the approximation
of scattering data from a particle with maximum dimension D.,,,, measured
under the conditions represented by T, — T,. The coefficients ¢, are determined
by a weighted least squares approximation to the experimental data I, (h).

A theoretical limitation for the number of functions N = N, follows from
the sampling theorem (Glatter, 1980b). This limitation leads to a relative small
number of terms in the expansion Eqn (16) and may cause considerable ter-
mination effects. One of the main ideas of the indirect transformation technique
is to start with a larger number of coefficients (V> Np,,,) to guarantee a
sufficient representation of the distance distribution function. These coefficients
are then correlated by a stabilization routine. This technique could be explained
as a reduction of the effective number of coefficients. Practical experience
showed that this procedure gives better results than the usual unstabilized least
squares routine with N <<N,,,, (Glatter, 1980b). The stabilized least squares
condition is given by

(L +2N,) = min. (19a)
+ with ,
h, N
L=, [’exv(")‘ ) cvxu(h)] / o*(h) dh ~ (19b)
and ' v=l
N-1
N = Z (C,,+1—C,,)2 (19¢)
v=1

where h, and k, are the angles of the first and the last data point, o®(h) is the
estimated variance of the observed intensities and X is a stabilization parameter
(Glatter, 1977a, b).

Possible reasons for a breakdown of the stabilized least-squares algorithm
are systematic errors in [l () and o(h), or the choice of inconsistent par-
ameters (incorrect value for Dy,,,, or the use of too many spline functions —
corresponding to an attempt to overinterpret the experimental data).

The coefficients ¢, resulting from Eqn (19) define the solution in real space
according to Eqn (16). The optimum fit to the observed data points is given by

Lt = 5 e 20)

v=1
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and the desmeared scattering curve is defined by the series

N
Iy = Y ¢, 0,0 (21)

v=1

(see Fig. 4). The radius of gyration can be estimated from p 4(r) as follows:

Dmax Dmax
Ry = [ pa)r? dr/ 2 [ patr) ar (22)

This approximation offers the advantage that the radius of gyration is calculated
from the smeared data points, using the whole available scattering curve
requiring only information on the maximum size Dy,,,. For this reason, this
approximation frequently yields more accurate results than the Guinier approxi-
mation.

An approximate value for the intensity at zero angle can be computed in
a similar way: "

Dmax
g@=w£ p(r) dr (23)

Numerical tests have demonstrated that the radius of gyration can be estimated
from Eqn (22) with good accuracy even for situations where the Guinier
approximation breaks down due to high termination values #;D. A comparison
of the results of different approximation methods for two different types of
particles is given in Fig. 5.

An additional advantage of the Indirect Transformation Method is the fact
that it offers the possibility of calculating the propagated error band in real
space. One has to keep in mind, however, that this error band represents only
the error from counting statistics. Systematic errors in the measurements cannot
be detected by such a general treatment. Sometimes, however, they are indicated
by a breakdown of the stabilization procedure. Systematic errors introduced
by the computational methods can be detected by means of simulations (see
Section II1.F4 of this chapter).

The efficiency of the Indirect Transformation Method is illustrated in Fig. 6:
the example shows a simulated scattering curve of a sphere (D = 200 &), smeared
according to the slit length effect with a statistical error of 5%. The scattering
angles of the first and the last data point are &, = 0,016 (f;* Dyax == 3,8) and
hy=0,06. The solution was obtained with 20 splines, Dy, = 1,25°D = 250 A.
The accuracy of the radius of gyration, computed with Eqn (22) is 1,5%, the
zero intensity can be estimated with an error of 2,5%. The error propagation
analysis already developed in the first papers (Glatter, 1977a, b) was improved
by a recent modification of the indirect transformation method (Moore, 1980).
The error treatment is not only performed for the p(r) function but also for
all derived parameters like radius of gyration Rg, forward scatter (0) and so on.
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FIG. 4. Function systems y,, (), ¥, (%) and x,,(h) used for the approximation of the scattering data in the indirect transformation method.
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FIG. 5. Dependence of the accuracy of R determined by Guinier’s approximation as well
as calculated by the indirect transformation method on the angular resolution at small
angles (h, = innermost measuring angle) for a sphere and a rod. The deviation AR of the
experimental value from the model value is given in percentages.

Sine functions are used for the expansion in real space allowing much simpler
mathematics as the Fourier transformation can be performed analytically
and leads to (sin x/x)-functions in reciprocal space. The disadvantage of this
function system is on the other hand that the termination effect and the errors
introduced by non-eliminated background scattering is the same as in the con-
ventional transformation technique. The desmearing problem is solved in the
same way as in my method. Comparing the two methods one can say that both
procedures give similar results for standard applications, the indirect transform-
ation method is superior to the sine-function method of Moore if the termin-
ation and background effects are essential while the later method will be superior
in cases of high resolution measurements, i.e. measurements with a high ratio
of the h-values of the last and the first data point &, /h,. The method of Moore
is a cross between my indirect transformation method and the evaluation method
of Damaschun and Piirschel (1971a, b) which is a direct Fourier filtering tech-
nique combined with the conventional desmearing routine. All three methods are
Fourier filtering techniques using an estimate Dy, . This estimate can be found
directly if by Dy, <m (Miiller and Glatter, 1981; Moore, 1980) or by a cosine-
transformation (Miiller et al. , 1980).

The indirect transformation method has been modified for cylindrical and
lamellar particles and for polydisperse systems (see Section IILE of this chapter).



136 0. GLATTER

6,0
5,0
-“‘ . .
4,0 | )
~N
o
2
-
<
I 3,0 | a.
2,0 I
i 1 1 | 1 l‘o.
2,5 5,0 50 100 150 200
—» h.R —_

. FIG. 6. Indirect transformation: left part: theoretical scattering function of a sphere
with radius R =100A4. --.--- simulated data, smeared according to slit length effect, S%
statistics, #, R = 1,6;h,R = 6,0; AR = 0,1. X X X X desmeared scattering function. Right
part: theoretical p(r) function. ------ distance distribution with propagated error

(#) computed from the simulated data using D, = 250 A.

D. Resolution
1. MAXIMUM PARTICLE DIMENSION

It is common practice in the small angle literature to define the resolution
from the lowest scattering angle /2, using the Bragg relation

2

n (24)

hiDppgg = 2 Of Dppgg =
In small angle scattering one is usually not concerned with periodical structures,
but with scattering functions of isolated particle with finite extension in real
space. It must therefore be emphasized that Dy, is only a special measure
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for the smallest scattering angle which is not identical to the maximum dimen-
sion of particles that can be studied.

The sampling theorem of Fourier transformation (Shannon and Weaver,
1949; Bracewell, 1965) gives a clear answer to the question of largest particle
size. If the scattering curve is observed at increments Ak <k, starting from a
scattering angle h,, the scattering data contain the full information for all
particles with maximum dimension D

p<= (25)
hy
The first application of this theorem to the problem of data evaluation was
given by Damaschun and Piirschel (1971a, b). In practice one will have to stay
well below this limit, i.e.

m<g and Ak < h, (26)

taking into account the loss of information due to counting statistics and
smearing effects. An optimum value for Ak = @/(6D) is claimed by Walter et
al. (1974).

2. RESOLUTION

There is no clear answer to the question concerning the smallest structural
detail, i.e. details in the p(r) function that can be recognized from an experi-
mental scattering function. The limiting factors are the maximum scattering
angle h,, the statistical error ¢(h) and the weighting functions P(z), Q(x) and in
particular W(\") for neutron experiments.

The resolution in the p(r) function can be expressed mathematically if we
introduce a sampling distance in real space. Such a sampling distance AR must

fulfill the condition
AR =u/h, (27a)

if the scattering curve is known up to the scattering angle #,. The sampling
limit given by Eqn (27a) can be used without systematic error only if the
scattering intensity I(h) is zero for all & >h,. We have to keep in mind that
we are discussing here only the termination effect and that the condition of
Eqn (27a) is necessary but may not be sufficient for an exact representation
of scattering curves with smearing effect and statistical error.

A sampling in real space is performed implicitly by the indirect transform-
ation method. The sampling distance AR is given by the distance DRB between
the knots of the spline functions. This distance is related to the upper limit
for the maximum particle dimension Dy, ,, and the number of splines V by
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DRB = Dy, IN (27b)

A theoretical limitation for the number of functions N would follow from the
combination of the Eqns (27a) and (27b)
hy* D
Ny < ——T02x (27¢)
s
The same numbeér follows directly from the sampling theorem of Fourier trans-
formation for an expansion of the distance distribution function in a series of
sine functions f P A
D
g 2 max o 72 27d
AR ok @7d)
taking into account Eqns (15) and (16). With a low ratio h,/h, we end up with
a relatively small number of terms in the series expansion. This may lead to
considerable termination effects for sine-series with so-called Fourier ripples
in the p(r) function and with a scattering curve that drops to zero very rapidly
for > h,. The indirect transformation technique working with spline functions
and stabilization allows the use of larger numbers for N (N > N, ) and can mini-
mize the termination effects, i.e. Fourier ripples are negligible and scattering
curves are not forced to zero at the limit # with

Npax S

T __7
" AR DRB

h (28a)
and do not increase behind this “mirror point”. This is shown, for example,
for a scattering function of a sphere (D =200Am, D,,,, = 240A, N = 20,
DRB = 12 A) without smearing effect and statistical errors in Fig. 7. The scatter-
ing curve is represented correctly in its details up to z and the general trend is
reproduced up to much larger angles, i.e. the problems of “undersampling”
(Bracewell, 1965) are not essential for this technique. The real limitation for
this technique is given by the numerical operations. The corresponding errors
are not negligible for N> 40, i.e. scattering curves with a ratio k,/h, > 40
can not be evaluated with sufficient accuracy with the indirect transformation
technique.

3. INFORMATION CONTENT

The information content of a scattering curve can be defined by the maximum
number of independent coefficients that can be derived from this curve. This
number cannot be determined exactly but an upper estimate is given by Eqns
(27¢) and (274d), and we have to keep in mind that solutions with the indirect
transformation technique with N > N,,,, donot have NVindependent coefficients.
The information content cannot be increased by any extrapolation technique.
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log I(h)

FIG. 7. Indirect transformation method: limitation of the resolution caused by the distance
of the knots DRB. ----- Exact scattering function of a sphere, D = 200 4; approxi-
mation with DRB = 12 A, Dy, = 240A, N = 20.

Only the contrast variation technique, i.e. the registration of a series of scatter-
ing curves at different contrast may give a higher number of coefficients.

The question of information content is important for the problem of model
fitting (see Chapter 5). One has to keep in mind that a number of NV spline or
sine coefficients do not allow to fit all possible N-parameter models. The trans-
formation of coefficients of a series expansion into independent model par-
ameters is a very complicated problem which does not have a unique solution.

4. DEFINITION OF THE ORIGIN

Quantities like m, ¢ and x are measured from an experimental origin that
can, in principle, be chosen arbitrarily. A

The origin of the coordinate in the slit length direction should coincide
with the centre of the P(¢)-function. For the slit width coordinate, it is common
to use the centre of gravity as origin, but there exist good reasons to choose
the maximum of Q(x) if asymmetric Q(x)-functions are to be corrected by
the desmearing routine.

E. Special Transformations

There is no loss of information due to spatial averaging in the case of spherical
particles and therefore it should be possible to calculate the radial electron
density distribution from the scattering amplitudes.
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A detailed evaluation of the scattering contribution of the cross-section
would be of interest if the particles have a lamellar or cylindrical structure.
Such calculations (Glatter, 1980b) must assume that the particles are homo-
geneous along the basal plane (lamellae) or along the cylinder axis (cylinder),
i.e. the electron density can be written for lamellae (index ¢) as

P(r) = po*pi(x) (292)

where p, is a constant and x is the normal distance from the central plane in
the lamella; or for cylinders (index ¢) as

o) = Po Pe(re) (29b)

where r, is a vector in the cross-section plane perpendicular to the cylinder axis.
There is again the situation that it should be possible to calculate p, or p, from
the scattering amplitudes as there is no loss of information by spatial averaging
in these two cases too.

Small angle scattering experiments measure the angular dependence of the
scattering intensity. It is impossible to obtain scattering amplitudes which
would allow the computation of the electron density by Fourier transformation.
However, Fourier transformation of the scattering intensity gives the correlation
function or the distance distribution function of the particle. This function is
the so-called convolution square of the electron density distribution (Hoseman
and Bagchi, 1962; Bracewell, 1965). The electron density distribution can be
determined in principle by two different methods from the scattering intensity

“under the additional assumption of lamellar, cylindrical or spherical symmetry.
The conventional procedure starts with the determination of the scattering
amplitudes from the scattering intensities by a simple square root operation.
The determination of the right sign — known as the so-called phase problem —
is the main problem in this step. The critical regions near the zeros areinfluenced
greatly by deviations from ideal symmetry, by polydispersity of the sample and
by any experimental errors. These effects lead to the fact that there appear
more or less pronounced minima instead of real zeros. There is no unique
technique for the estimation of the best symmetrical approximation. The phase
problem can sometimes be solved by contrast variation (Mateu et al., 1972;
Miiller et al., 1974).

Another possible procedure is the Fourier transformation of the scattering
intensity and the subsequent computation of the electron density from the
distance distribution function by a convolution square root technique. This
method does not suffer from the phase problem. The integral transformations
for the different symmetries are described in the following Sections III. E1-3
and the convolution square root technique is summarized for all three cases
in Section III. E4.

4. DATA TREATMENT 141

1. SPHERICAL SYMMETRY

The radial electron density can be calculated from the square root of the
scattering intensity in the case of spherical particles:

I = sin hr
p0) = 5[ @) r = g (30)

The phase problem (ambiguity of the sign for the square root) can be resolved
by contrast variation (Mateu et al., 1972; Miiller et al., 1974). Use of the

Indirect Transformation Method (Glatter, 1977a) minimizes the termination
effect.

2. HANKEL TRANSFORMATION

The distance distribution of the cross-section of particles elongated in one

direction (like cylinders) p.(r) is correlated to the total scattered intensity
I(h) through the equation

w Jo(hr) L
I(h) = 2n* 2 dr = L)

) = 2L [ pe = dr = 1 (31)
where Jo(hr) is the zero-order Bessel function, L is the length of the cylinder
and I;(h) is the scattering intensity of the crosssection (see also Section IV.A
in Chapter 2).

The inverse transformation is given by

1 oo .
Pe(r) = 3= | L) () Joir) d (32)

The Indirect Transformation Method offers a particularly convenient way to
compute the distance distribution function of the cross-section p,(r) from the
smeared experimental data by simply using Eqn (31) for the transformation
T, (instead of Eqn (11)) (Glatter, 1980b).

If we assume cylindrical symmetry, and constant electron density along
the cylinder axis, a simplification similar to the case of spherical symmetry

applies. The radial electron density p,(r) can then be calculated from the Hankel
transform

pe(r) = 3 |1 )™ h-Jo(hr) ah (33)

(Fedorov and Aleshin, 1967; Fedorov, 1971).
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3. COSINE TRANSFORMATION
One is interested in the distance distribution function of the thickness p,(7)

if the particles under investigation are elongated in two directions (lamellae,
thin vesicles). The function p,(r) is correlated with (%) by the equation

cos (hr) d A-2n
r =

v k) (34)

I(h) = 4n4 jo pir):
where A is the area to the plane of the lamella and I, is the scattering intensity
of the cross-section (see Section IV.B in Chapter 2). The inverse transformation
is given by

pur) = % [, @) cos @) i 35)

Again, the Indirect Transformation offers the option of computing the function
p(r) directly from the smeared experimental data by using Eqn (34) instead
of Eqn (11) for T;.

Let us assume a lamella whose electron density is only a function of the
coordinate perpendicular to the lamellar plane (no in-plane inhomogeneity).

If the electron density p,(r) is also centrosymmetric, we can calculate this

function by the Cosine Transformation
1= 172
pi(r) = - -[0 (Iy(h))"'* cos hr dh (36)

' (Lesslaver et al., 1972; Laggner et al., 1979).
In the special case of thin spherical membranes (R, —R; <2R;) a similar
relation between the function P(r) and I(h) applies.

1 (= ~2 —~—~
PO) = - [ r@y-r>-cos hr dn = 4k, — k) (7)

(Weik, 1974) with k,(r) = r+ p(r) for 0 <r <R,

For the limit of a very tglin shell (R, —R; €R,) we get for small values of
r the transition from 872k, to 4mR?+ 2mp(r) = 2m » Ap,(r) in agreement with
Eqn (35), i.e. the function k2 centred at r =0 is proportional to the function
Pe(r) and the approximation for lamellae can be applied. (For further details
see Chapter 10.)

4. CONVOLUTION SQUARE ROOT

The cross-section correlation functions 7y,(r) and v.(r) are defined as the
spatial average of the convolution square of the scattering length densities:
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Y1) = pe(x)*p(—x) (38)
'Yc(r) = <pc(r8)*pc(_ rC)> (39)

The symbol * stands for the mathematical operation called convolution and the
symbol { ) means averaging over all directions in the plane of the cross-section.
The distance distribution functions can be defined by

pe(r) = 7:r) (40)

Pe(r) = ryc(r) @1

The connection between the cross-section scattering functions and the distance
distribution functions is given by the Cosine- and Hankel-transformation of
Eqns (34) and (31). The convolution square root is the inverse process to the
convolution square, i.e. it allows the computation of p,(r) or p.(r) from p,(r)
or pe(r).

It has already been shown for the one-dimensional problem (lamellar sym-
metry) by Hosemann and Bagchi (1952) and by Engel (1973) that the con-
volution square root operation has a unique solution (except for a factor * 1)
if the function has a finite range of definition and if the function is symmetrical.
The first attempt for the one-dimensional case was made by Hosemann and
Bagchi (1962). They solved the problem by discretization of the integral
equation. The resulting non-linear equation system has a triangular matrix and
can be solved stepwise. An improvement of this technique using an iterative
procedure was given by Bradaczek and Luger (1978). A completely different
method has been developed by Pape (1974). The method solves the phase
problem implicitly by a system of linear equations originating from a sine series
development of the correlation function.

All these methods have the property that they give results of sufficient
accuracy only for exact input data. Statistical errors are not taken into account
by these methods.

A weighted least squares technique for the one-dimensional case developed
by Pape and Kreutz (1978) approximates the electron density distribution by
a few Gaussian functions. The method is very sensitive to the first data set of
the iteration, i.e. it requires good a priori information on the signs and positions
of the Gaussians. A new method recently developed (Glatter, 1981) needs no
such a priori information at all and can be applied to any of the three types of
symmetry. The electron density is approximated in its range of definition by
a linear combination of a finite number of functions that have to be linearly
independent in this range:

and

and

N

p(r) = Y cupi(r). (42)

i=1
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N is the number of functions, r is the normal distance from the centre of sym-
metry, the ¢;(r) are equidistant step functions (B splines of zero order) with
a width AR allowing the analytical integration of the overlap integrals and the
¢; are the heights of the step functions to be determined by the method. The
function p(r) defined by Eqn (42) corresponds to a distance distribution func-
tion p(r) given by the equation:

N
Py = L Valhei+2 T Vacic “3)

The overlap integrals Vj; (r) state the overlap of the ith and the kth step shifted
a distance r, taking into account the different geometries and the factors r and
r* in the Eqns (41) and (11). These integrals have been computed analytically
(see Glatter, 1981, tables 1-3).

The system of equations (43) is non-linear, but it can be solved by an iterative
stabilized weighted least squares procedure starting with an arbitrary but nor-
malized set of (constant) initial coefficients. The propagation of the statistical
error of the input function p(r) to the resulting p(r) function is defined by
the covariance matrix of the solution coefficients ¢;. Test series showed that
the method converged under all the different test conditions independent of
any a priori information on the solutions.

Real molecules investigated in an experiment will never fulfill the symmetry
conditions perfectly. The results of the tests showed that the method gives
satisfying results for slight deviations from the ideal symmetry, the 5(r) function
is a good symmetrical approximation and the fit of the p(r) function and of the
scattering function is adequate. This is illustrated in Fig. 8 by an oblate ellipsoid
of revolution (1:1,2:1,2) with a two-step electron density distribution
(p; =—0,6; p, =1,0;r, = 53,114; r; = 38,11 R). The resulting electron density
distribution p(#) is shown in Fig. 8a, the fit of the p(r) function in Fig. 8b
and the fit of the scattering curve in Fig. 8c.

Larger axial ratios like 1:1,5:1,5 or more lead to appreciable deviations in
the p(r) and I(h) fit and the resulting p(r) function contains no significant infor-
mation. The procedure can be employed as a test of symmetry as essential
deviations from symmetry are always accompanied by poor approximations
of the p(r) function.

The influence of a finite extension of the particle in the direction of the
lamella plane or of the cylinder axis is also an important question. The main
part of this problem is the computation of the cross-section distance distribution
functions p.(r) and p.(r). The effects of finite dimensions are negligible if the
ratio of the maximum dimension of the particle D and the maximum dimension
of the cross-section D, or D, is not smaller than ten, but a qualitative evaluation
is possible even for smaller ratios (Glatter, 1980b). An example for the com-
putation of p.(r) and p.(r) for an inhomogeneous cylinder is given in Fig. 9.
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pilr

FIG. 8. (a) Electron density profile po(#) obtained from an oblate ellipsoid of revolution
(axial ratio 1:1,2:1,2) with a two-step electron density distribution (p; = —0,6; 0, = 1,0;
rg=153,11;r; = 38,11).
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FIG. 8. (b) Fit of the p(r) functions of the oblate ellipsoid model: ----- p(r) function of

the model; best spherical approximation obtained by the convolution square root
technique.
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FIG. 8. (c) Fit of the I(h) functions: ----- scattering intensity of the model:
spherical approximation by the convolution square root technique.

best
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08

The cylinder has the following dimensions: outer radius R, = 25 A, height H =
250A (H/2R, = 5), the electron density profile is a two-step function (R;/R, =
0,7; p; = — 1,0; p, = 1,0). The scattering intensity is given in the range 0,03 <#
< 0,3 with an increment Ah = 0,01. The scattering intensity has been extra-
polated to zero angle only for the direct transformation of Eqn (32). The p.(r)
functions resulting from the direct transformation and from the indirect trans-
formation method (D, = 60 A; DRB =6 A; h; = 0,08) are shown in Fig. 9
together with the theoretical p.(r) function of an infinite long cylinder. The
results from the indirect transformation deviate essentially from the theoretical
function only in the innermost part below the resolution limit (r <n/h, = 10 &)
whereas the direct transform shows the usual termination ripples, the good
agreement at very small r-values is insignificant and is caused by the multipli-
cation of y,(r) by the factor r according to Eqn (41).

The corresponding radial electron density profiles p.(r) resulting from the
convolution square root procedure (VW =15, AR =DRB = 6A) are shown in
Fig. 10.
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FIG. 10. Radial electron density distribution p.(r) according Fig. 10: theoretical
function; 2-5-4 five step model (AR =12 A) obtained by convolution square root from
indirectly transformed data; . —.—. five step model obtained from directly transformed data.

5. PARTICLE SIZE DISTRIBUTIONS

The scattering function of a polydisperse system is determined by the shape
of the particles and by the size distribution. It is impossible to determine both
the size distribution and the shape from a scattering experiment. We can assume
a size distribution and can determine the shape, or more frequently assume
the shape and try to determine the size distribution. The problems associated
with finding the particle size distribution from the scattering curve are similar
to the problems which have been discussed above in connection with the Fourier
transformation. We shall assume that the scattered intensity results from an
ensemble of particles of the same shape whose size distribution can be described
by D,(R), where R is a size parameter and D,(R) denotes the number of par-
ticles of size R. Let us assume further that there are no interparticle interference
or multiple-scattering effects. Then, the scattering function I(%) is given by

Ih) = ¢, J:D,,(R)-Rﬁ-io(hR)dR (44)

¢p is a constant and iy(hR) is the normalized form factor of a particle of size
R. There exist two ways for the computation of D,(R) (or D, =R>*D,(R))
from I(h): (a) by an inverse transformation like the Fourier transformation,
the type of transformation depends on the assumed particle shape; (b) assuming
the analytical form of D(R, k;) and adjusting the parameters k; in reciprocal
space. Again, one has to make an assumption concerning the particle shape.
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(a) Analytical Methods. An explicit analytical solution for the special case of
spherical particles was derived by Roess (1946) and Riseman (1952). These
methods involve an integration over the scattering curve from zero to infinity.
If it is possible to determine the Porod constant with sufficient accuracy (see
Section III.C in Chapter 2) such transformations can be carried out without
strong termination effects (Letcher and Schmidt, 1966; Brill and Schmidt, 1968;
Brill ez al., 1968).

Similar transformations have since been developed for different types of
particles: long cylinders (Fedorova, 1977), thin spherical shells (Fedorova and
Emelyanov, 1977), thin cylinders (Schmidt er al., 1978), thin circular discs
(Schmidt et al., 1978) and flat sheets (Pringle and Schmidt, 1977). A general
analytical method for calculating particle-dimension distributions from scattering
data was published recently by Fedorova and Schmidt (1978). The size distri-
bution can be calculated using Titchmarsh-transformation if the scattering
intensity can be expressed as a square of a Bessel function of the first kind and
order v. All these transformations make no approximation, but the solution
function is very sensitive to the extrapolated part of I(h).

(b) Numerical Methods — Linear Models. Here we have to distinguish between
methods which approximate the function D,(R) with a special two parameter
function (for example the so-called log normal distribution): Roess and Shull
(1947), Hoseman (1951), Mittelbach and Porod (1965), Mittelbach (1965),
Harkness et al. (1969), Neilson (1973), Plestil and Baldrian (1976), and more
general approaches which permit a larger number of parameters: Hendricks et al.
(1974), Plavnik et al. (1976), Vonk (1976) and Glatter (1980a).

The parameter estimation is comparatively easy for the two parameter
models but the size distribution is biased to a considerable extent by the par-
ticular model that was assumed for the size distribution.

The general approaches start with a set of basis functions g;(R)

N
Dn(R) = Zl ¢ivi(R) (45)

i=
where N < 30. Hendrick and Plavnik used a set of equally spaced delta functions,
in a logarithmic scale and cubic B-splines are used as a basis set in my Indirect
Transformation Method. All methods involve a stabilization condition mini-
mizing the first or second derivative: Hendricks uses the additional constraint
¢; 20 in order to prevent negative values for the size distribution, Vonk needs
a strong additional smoothing condition for the first and last parameter. The
estimation of the weight of the several constraints (smoothing parameter) has
to be performed by trial-and-error (Hendricks, Plavnik, Vonk) and can be deter-
mined by the stability plot method in my procedure. A similar graphical method
for the estimation of the optimal stabilization parameter has been developed by
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Vonk (1978). If Eqn (37) is used for the transformation T} instead of Eqn (11)
in the indirect transformation method, the size distribution function D,(R) can
be computed from the unsmoothed smeared scattering data.

The method of Vonk and my one were tested for the use of incorrect shape
factors. The resulting size distributions are reasonable considering the incorrect
assumptions. There exists no detailed comparison of the quality of the different
procedures. Conditions for an ideal procedure could be defined as follows:

(1) The solution should be a smooth function (minimized second derivative
or similar constraints).

(2) Minimized termination effect (no transformation ripples).

(3) The function D(R) should be positive.

(4) The function D(R) should be defined in a limited range (Ryijn <R < Rmax)-

Unfortunately conditions (1)+(3) can be contradictory for narrow size distri-

butions.

F. Simulations

Simulations can help to estimate systematic errors introduced by the data
evaluation procedures and can be used for the optimization of the experimental
design. Simulations are performed with exactly known model systems (test
functions). These systems should be similar to the structures of interest. The
model data are transformed according to the special experimental situation
(collimation and wavelength effect), starting from the theoretical distance
distribution and/or scattering function. Experimental data points are generated
by sampling in a limited A-range and adding statistical noise from a random
number generator. This simulated data set is subjected to the data evaluation
procedure and the result is compared with the starting function. Such simu-
lations can reveal the influence of each approximation applied in the various
evaluation routines.

On the other hand they can also be used for the optimization of the experi-
mental designs. The experimental situation is characterized by several contra-
dictory effects: a large width for the functions P(z), O(x) and W()) leads to
high statistical accuracy but considerable smearing effect. The quality of the
results of the desmearing procedure is increased by high statistical accuracy
(low 0), but decreased by large smearing effects.

IV. Evaluation of Molecular Parameters and Normalization
Several parameters can be evaluated directly from the scattering data. The

most important are the molecular weight, the radius of gyration and the volume
of the particle (Kratky, 1963).
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A. Molecular Weight
1. PARTICLES OF ARBITRARY SHAPE

In the following we assume a scattering function corrected for collimation
effect (desmeared) and for interparticle interference. The particle is measured in
a homogeneous solution and has an isopotential specific volume v; and z, mol.
electrons per gram, i.e. the molecule contains z,*M electrons if M is the mol-
ecular weight. The number of effective mol.electrons per gram is given by

Az, = (2,— V3" Po) (46)

when pq is the mean electron density of the solvent. The intensity of the pri-
mary beam is given by Iy(x,t) (see Section I.A). The total energy per unit
time irradiating the sample can be calculated by integration of the whole irra-
diated area 4:

P= L Io(x, £) dt dx (47)

The scattered intensity is correlated with the molecular weight by the equation:

L+ Az*M-dNp-c-P
Ih) = S olh) (8)

where I, =79 x107%[cm?] is the Thomson factor which could be called
“effective cross-section of the electron”, d is the thickness of the sample, NV is
the Avogadro number and ¢ the concentration in [g/cm?]; a is the distance
between the sample and the plane of registration in [cm] and ¢(#) is the nor-
malized form factor of the molecule (¢(0) = 1). The molecular weight can be
determined from the intensity at zero angle 1(0):

2 .2
U v T E A A v )
(Kratky et al., 1951).
2. ROD-LIKE PARTICLES
Introduction of Eqn (47), Chapter 2:
1) = 10)-6h) = L) = L) 9ch) (50)
and consideration of the relation
10) _ p*-A>-L* _ Lz‘ 1)

L)  paA
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(where L is the length and A is the area of the cross-section of the particle)

leads to :
1,(0) 7L s

o(h) = 10) 5 %) = H'%(’l) (52)

Equation (48) can be transformed by use of Eqn (52) into

el Az2M|L+-d*Ny-c+P
Ihy-h = . e X() (53)

If we introduce the mass per unit length M, = M/L and take into account that
®c(h)|p+o = 1 we obtain

I ((OND]Y a* _ IWhlp., 6,68 a>
P A dec N, P azge 9
(Kratky and Porod, 1953).

M,

3. FLAT PARTICLES

A s.imilar derivation of the mass per unit area M, of flat particles is possible
by taking into account the corresponding relations:

10) = 100 = 15 = 10 E gy (s5)

and
I_(O_z B pZ,AZ_TZ

1(0) B p*-T?

where A is the area of the particle plane and T is the thickness of the particle.
Introducing this into Eqn (48) leads to

2m+l, Az?-(M/A)*d*Ny-c+P
i ek 7)

= A (56)

Ih)-n? =

From this equation we obtain the result by substitution of M, = M/A and
consideration of ¢,(h)l,,, =1

Y (ORY a* _ Imhy, 3344

Mt D) -
P 2n-Az*-d-c- I, N, P Az d-c

(58

4. NORMALIZATION OF PRIMARY BEAM PROFILES

' Equations (49), (54) and (58) are based on the power P (sometimes called
integrated intensity” (Eqn (47)). This requires scattered intensities that are
desmeared with normalized profiles, i.e.
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2 f:P(t) ar=[_ owdx =[ woyax =1 (59)

Most experimental techniques, however, determine not the total power of
the primary beam but the power per unit length of the slit length function
P(t). (See Chapter 3.1.V.)

These experimental constraints have to be taken into account by a different
normalization of P(t):

2 Piyar =T (60)
where I is the mean length of the profile. This can easily be attained for the
usual trapezoidal P(¢)-function by the normalization

P0O) =10 (61)

A corresponding transformation factor has to be used if the integration of
Eqn (4) is performed in the reduced angular scale ¢, (h-scale),

th = Tpmt (62)

- A L
I(h) = T fo P(ty)- IR + 17)) dty, (63)

hm
where P(0) = 1,0 and Ty, is given by
2n

Thm = — 64
hm N ( )

These normalizations are performed automatically by some desmearing algor-
ithms (Glatter, 1974, 1977b).

B. Normalization — Particle Scale

If we call the scattered intensity of one particle I,(k), which takes into account
that 7,(0) is correlated with the number of excess electrons Am through

I,(0) = Am? = M*- Az (65)
we obtain the following relation by substitution into Eqn (49).
1,(0 M2 Az? M-a?
K = l( ) — Z — a (66)
I0) K0) I,*NyP-c-d

The scattered intensity of one particle (scattering curve in “particle scale™) is

thus given by e
‘a

h) = I(h):'K = I(hy*———————— 67

1) = 10K = 10 = (67)
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This scaling is a prerequisite for the calculation of the particle functions and
of parameters like difference electron density, surface etc.

C. Structural Parameters
1. VOLUME

According to Porod (1951), the invariant Q is given by
Q= jo I(h)-h? dh (68)

In combination with the scattered intensity at zero angle, Q can be used to
determine the volume of the particle:

V = 21r2'L0)

(69)
Volume determinations are subject to errors as they rely on the validity of
an extrapolation to zero angle (to obtain I,) and to large angles (h™* extra-
polations).

2. SURFACE

The surface S of a particle is correlated with the scattered intensity (see
Chapter 2, Section I11.C) by

2
Li()lpae = (Ap)Z-hT’,'-S (70)

where (k) is the scattered intensity of one particle (see Eqn (67)). Deter-
mination of the absolute intensity can be avoided if the following equation
is used lim -1
S o .
0, =5 = nm=t N0 )
The ratio S/V is called specific surface O, and can be determined directly from
the scattering curve without additional data, if the volume fraction w, of the
solvent is assumed to be equal to unity, i.e. for infinite dilution (Mittelbach and

Porod, 1965).
3. CROSS-SECTION, THICKNESS AND CORRELATION LENGTH

Expressions analogous to (68) exist for the relation between the cross-section
area A of rod-like particles and the limiting value (/(h) * #)p.0
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- (I(h)'Qh)h"O. o (72)

and for the relation between the thickness T of lamellar particles and the
limiting value (/(h) * h*)p.0

A

I(h)- 52)”,”

but the experimental accuracy of the limiting values (I(#)  h)p,.o and (I(h) * B*)p.
is usually not very high.

The invariant can directly be obtained from a smeared scattering curve f(h),
provided the smearing originates from an infinitely long slit length profile P(¢):

T = (73)

0= imyn-an =20 (74)

The correlation length I, (see Section IIL.B in Chapter 2) can be calculated
directly from the experimental intensity without normalization

=2 f:yo(r) dr = n J‘:I(h)-h-dh/Q (75)

If we consider the solution to be a two phase system with the volume parts
w; and w, (w; + w, = 1) and the electron density difference Ap, the following
relation holds for the mean square difference of the electron density

(Ap)* = wy-wy(Ap)? (76)
This value can be determined as follows:

o_¢a

. 77
P2 I-d 7

& =

If we consider particles with internal electron density fluctuations Eqn (69)
has to be modified:

21r21(0). p_2

0

where p2> p2 If the volume is calculated from Eqn (69) neglecting the term
[)2/;‘)2, one obtains the so-called correlation volume V,, with V, < V.

One has to bear in mind that there exist two different notations for most
of these constants (Kratky, 1963; Pilz, 1973; Luzzati, 1960). For a comparison
of the two notations, including transmitting equations I have recently derived,
see Pilz et al. (1980).

vV = (78)

R
[ 8]
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4. RADIUS OF GYRATION

(a) Radius of Gyration of the Whole Particle. This parameter is defined in
analogy to the radius of inertia in mechanics

[, plrd-ri-av;
R*= ——— (79)
[, pe-av;

It can be obtained from the distance distribution function p(r) (Eqn 11)

J' “p(r)-r-dr
2 [
R* = ———— (80)
2 [ pey-ar
or from the innermost part of the scattering curve (Guinier Approximation)
hIRZ
I(h) = I(0)-e 3 (81a)

A plot of log I(k) vs h* (Guinier plot) shows a linear descent with a negative

slope a where
R = K-\/tana (81b)

(see Table 1 and Fig. 4, Chapter 8)
(b) Radius of Gyration of the Cross-section. In the special case of rod-like

particles, the two-dimensional analogue of R is called the radius of gyration
of the cross-section R,.. It can be obtained from

j:pc(r) ridr
R:= —— (82)
2 [ petr)-ar
or from the innermost part of the scattered intensity of the cross-section I,(k):
I.(h) = I,(0) e E22“§ (83)

(see Table 1 and Fig. 11, Chapter 8)

(c) Radius of Gyration of the Thickness. A similar definition exists for lamellar
particles. The one-dimensional radius of gyration of the thickness R, can be
calculated from
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[Tpry-rear
R} = —— (84)
2 L py(r)-dr
or from the innermost part of the scattered intensity of the thickness 1,(#)
Iy = 1,0 e™ ™ (85)

(see Table 1 and Fig. 16a, Chapter 8).

The radius of gyration is an interesting parameter for homogeneous particles.
It is related to the geometrical parameters of simple homogeneous triaxial
bodies as follows (Mittelbach, 1964):

sphere (radiusr) R? = 3r

3 S__ .5
hollow sphere (radiir; andr,) R? = S :: _:;
2 1
*+b2+c?
ellipsoid (semi-axes @, b,c) R? = 2 S
(86)
A2 +B2 + C2
prism with edge lengths 4, B,C R? = B
elliptic cylinder (semi- R = a’+b? + h? — R+ K
axes a, b; height /) 4 12 712
hollow cylinder (height . p2 _ it B
and radiir,,r,) 2 12

5. ABSCISSA SCALING

The various molecular parameters can be evaluated from scattered inten-
sities with different abscissa scaling. The abscissa used in theoretical work is
h = (4n/\)sinf, the most important experimental abscissa scales are m =
(\a/27) * h = (1/Th,y) * b (see Eqns (3) and (64)) and 20 > m/a = (\/27) * h. The
formulae for the various parameters for the different scales are listed in Table 1.

V. Calculation of Scattered Intensities and Distance
Distributions of Models

The following part of this chapter will give a survey of the most important pro-
cedures for the calculation of scattered intensities and distance distribution
functions.
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A. Calculations of Scattered Intensities

The scattering curves can be calculated semi-analytically for simple triaxial
bodies and for models composed of some of these bodies.

1. TRIAXTAL MODELS

The scattering amplitude of simple triaxial bodies like ellipsoids, prisms and
cylinders can be calculated analytically for any orientation. The spatial averaging
has to be performed numerically. The error in these integrations can be kept
below an arbitrary small limit by a sufficient decrease of the increment of
integration. Such semi-analytical calculations have been performed for a large
number of different models by Porod (1948), Mittelbach and Porod (1961a, b,
1962) and Mittelbach (1964).

2. MULTIBODY MODELS

Many molecules under investigation cannot be approximated satisfactorily by
simple triaxial models. Therefore, semi-analytical methods were extended to
models composed of several triaxial bodies (Haager, 1972). The scattering
amplitudes of the individual constituent subunits are calculated analytically and
added according to the particular orientation in the model. The total amplitude
is squared and averaged over all orientations.

Again, integrations are performed numerically. The increment of integration
is halved until the required accuracy is achieved. The number of intervals
increases rapidly for larger h-values if the model is elongated. The computing
time for the outer part of the scattering curve (£+ D = 30) can be in the order
of several hours (UNIVAC 494). Models with inhomogeneous electron’ density
can be simulated by a superposition of parts of differing electron density.

Models composed of only spherical subunits can be evaluated with the Debye
formula (Debye, 1915)

sin (k- d;,)

87
hed, (87

N N
I(h) = ia(h) Zl ’;lﬂiViPkaﬁbi(h)'Q’k(h)
Py =
where the spatial average is carried out analytically.

3. METHOD OF FINITE ELEMENTS

Any model can be approximated by a finite number of very small homo-
geneous elements of variable electron density. The elements have to be smaller
than the smallest structural detail of interest.
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(a) Sphere Method. In this method, the elements consist of spheres of equal
size. The diameter of these spheres must be chosen independently of the dis-
tance between nearest neighbours, in such a way that the volume of the model
is represented exactly by the sum of the volumes of all elements (which corre-
sponds to a slight formal overlap between adjacent spheres). The scattering
intensity is calculated using the Debye Formula (87), with ¢;(h) = or(h) = o(h).
The bulk of the computing time necessary for such calculation is used by the
computation of the reciprocal distances dy, and by the computation of the
sin x/x terms.

The number of reciprocal distances is determined by the number of elements
N, which in turn depends on the required resolution. The number of sin x/x
terms equals the number of A-values M multiplied by N(V — 1)/2. Computing
times can be lowered drastically by the use of approximate dj,-values. If the
distances dj, are quantized to multiples of Dy, /10000, the results have an
error of less than 1% (Dpax is an upper estimate for the maximum distance
D of the model), but the computing time for a model composed of 400 elements
islowered by a factor 10 (Glatter, 1980c). Models up to several thousand elements
can be computed by this method within ten minutes CPU-time on a UNIVAC
1100/81 computer. In terms of CPU-time this method is superior to the semi
analytical method of Haager for nonglobular models.

The sphere method can be used for the computation of scattering curve:
of macromolecules from a known crystal structure. The weights of the atom
are given by

Zest = Z—poVest (88
where Vg is the apparent volume of the atom given by Langridge et al. (1960)
This is a rough approximation for the influence of the solvent.

(b) Cube Method. This method has been developed independently by Fedorot
et al. (1972, 1974a, b) and by Ninio and Luzzati (1972), mainly for the com
putation of scattered intensities for macromolecules in solution whose crysta
structure is known. In the cube method the macromolecule is mentally placec
in a parallelepiped, which is subdivided into small cubes (with edge lengths o
1-1,5A). Each cube is examined in order to decide whether it is inside the
macromolecule or in the solvent region. After all the cubes have been con
sidered, it is possible to represent the outline and the volume of the dissolve
particle with good accuracy. The mathematical background of this method i
described in detail by Fedorov et al. (1974a, b). The main shortcoming o
the method consists in a rather rough account of the internal cavities accessibl
to the solvent. In the majority of cases these cavities are automatically taket
into account in evaluating whether a given cube pertains to the molecule o
to the solvent, but in a number of cases the method overestimates the numbe
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of cavities accessible to the solvent. To overcome this shortcoming the “modi-
fied cube method” was recently developed (Fedorov and Denesyuk, 1978):
if the distance from the centre of a cube not pertaining to the molecule to
the nearest atom of the molecule is larger than R + B (where R is the edge
length of the cube and B is a parameter regulating the overall molecule volume),
such a cube is considered a potential centre of a water molecule and this cube
and the neighbouring 6 cubes are excluded from the macromolecule volume.
The method is used for the investigation of changes in the conformation of
biological macromolecules in solution (Fedorov and Denesyuk, 1978).

A somewhat different cube method for the calculation of scattering curves
of models has been developed recently by Labischinski and Bradaczek (1977).
The shape of the particle has to be defined piecewise by an analytical boundary.
The particle is placed in a cube which is divided into 2" x 2" x 2" sampling
points (usually 64 x 64 x 64 =262 144). The points inside the particle can
now be determined automatically by the equations defining the analytical
boundary. The Fourier transformation is performed with the Fast Fourier
Transform technique.

The accuracy of the method is limited by the orthogonal sampling (diffi-
culties with bent boundaries) and by the averaging over all directions in space
which can be performed without essential problems only for globular structures.
An image digitizing system for the computer input of structure models allows
the graphical input of a model which is defined by its projections (Bradaczek
etal., 1979).

B. Calculation of the Distance Distribution Function
of Models

The distance distribution function p(r) can be calculated analytically only for
a few simple models (Porod, 1948; Goodisman, 1980), in all other cases we
have to use a finite element method with spheres. It is possible to define an
analogous equation to the Debye formula of Eqn (87) in real space (Glatter,
1980c). The distance distribution function p(r) can be expressed as

N N-1 N
p(r) = Zl pipo(r,R)) +2 Zl kz lPipkl_’(h dir, R;, Ry) (89)
i= i= =i+

po(r,R;) is the distance distribution function of a sphere with the radius R;
and electron density equal to unity, p(r, d;x, R;, Ry,) is the cross term distance
distribution between the ith and kth sphere (radii R; and Rj) with a mutual
distance dy,.

Equations (89) (and (87)) can be used in two different ways for the cal-
culation of model functions. Sometimes it is possible to approximate a macro-
molecule as an aggregate of some spheres of well defined size representing
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different globular subunits. The form factors of the subunits are in such cases
real parameters of the model. However, in most cases we have no such possibility
and we have to use the method of finite elements, i.e. we fit our model with a
large number of sufficiently small spheres of equal size, and, if necessary, differ-
ent weight. The form factor of the small spheres is now not a real model par-
ameter and introduces a limit of resolution.

Fourier transformation (Eqn 14) can be used for the computation of the
distance distribution function of any arbitrary model if the scattering function
of the model is known over a sufficient large range of A-values.
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1. Introduction

This chapter deals with the possibilities of structure determination from small
angle scattering experiments. It is restricted to dilute monodisperse solutions.
Special methods for chain molecules and dense systems are described in Chapters
12,13 and 14.

Only in a few cases of distinct symmetry (see Chapter 4) can structural details
be computed in a straightforward manner. In the majority of cases, structural

167
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details have to be deduced indirectly, either from the shape of the scattering
function in reciprocal space or from the distance distribution function in real
space. In general, one has to resort to trial and error techniques, considering
the fit of experimental results with the corresponding functions of models. The
problem of finding the correct class of possible models is the crucial point in this
procedure; subsequently, the model parameters can be optimized taking into
account the statistical accuracy of the experimental data. The classification can
be done either in real space or in reciprocal space.

The relevant functions in real space (v(r), p(r), p(r), p«(r), G(I) and p(r)) and
in reciprocal space (I(h), I.(h), I,(h) and F(h)) were defined in Chapters 2 and 4.

The chord distribution function G(/) (defined in Chapter 2) cannot be calcu-
lated with sufficient accuracy from experimental data to be of importance for
the interpretation of these data. The scattering functions show best special
features of symmetry. As an example, any scattering function of monodisperse
particles with spherical symmetry shows distinct minima. These minima are
considerably flattened in the case of cubes (Fig. 1a). The corresponding differ-
ences in real space (p(r)-function) are not so clear-cut (Fig. 1b). But in general,
the interpretation of scattering functions in reciprocal space are hampered by
the highly abstract nature of this domain. Thus, it is very difficult to quantify
errors in the model from deviations between the experimental scattering curve
and the model scattering curve. This argument applies especially to smeared
scattering curves. On the other hand, the distance distribution function

p(r) = v(r) -7’ 6]

has a clear geometrical definition. This function (multiplied by the factor 4)
represents for homogeneous particles the number of distances within the particle,
i.e. the number of lines with lengths » which are found in the combination of
any small volume element i with any other volume element k. The situation is a
little bit more complicated in the case of inhomogeneous particles as we have to
take into account the difference electron density at the volume elements. Thus
the p(r)-function of inhomogeneous particles is proportional to the number of
pairs of difference electrons separated by the distance r which are found in the
combination of any volume element i with any other volume element k of the
same particle. The number of pairs of difference electrons is given by the number
of pairs of volume elements multiplied by the product of the number of differ-
ence electrons n; and nj, situated in the corresponding volume elements (see
Fig. 2). Regions with opposite signs of difference electron density give negative
contributions to p(r), i.e. p(r) can be negative in some regions.

A qualitative classification of shape and internal structure of the particle can
be obtained directly from p(r) (Glatter, 1979). In addition to that, several
structural parameters can be determined quantitatively, e.g. the maximum
intraparticle distance D, since p(r) drops to zero at r = D.
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FIG. 1.(a) Comparison of the scattering functions of a sphere (————) and a cube ( )
with the same radius of gyration.
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FIG. 1.(b) Distance distribution function of a sphere (————) and a cube ( ) with

the same radius of gyration and the same scattering intensity at zero angle.

The p(r)-function and the corresponding propagated statistical error band
can be calculated with minimized termination effect with the Indirect Trans-
formation Method described in Chapter 4. Chapter 6 describes the method of
contrast variation, which can be used to separate p(r) into three functions; of
these, the function p,(r) (coming from p.(r)) corresponds to the distance
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k=p(rk)~dv(rk)

ni=pir)-d V(r)

FIG. 2. Illustration for the definition of p(r).

distribution originating from the overall shape, and p,(r) (coming from p(r))
corresponds to the distance distribution originating from electron density
inhomogeneities within the particle (“inner structure”). Each of these two
functions can be interpreted as described in the present chapter: py(r) simply
has to be treated as a homogeneous particle, while p,(r) should be treated as
an inhomogeneous particle whose mean electron density is identical to the one
of the solvent.

11. Homogeneous Particles

The electron density difference Ap = p. is constant and p(r) has the simple
geometrical definition (number of distances).

A. Globular Particles

The distance distribution of a sphere can be evaluated analytically (Porod,
1948):

p(r) = 12x*>(2—3x +x3) X == )

if D is the diameter of the sphere. This function has its maximum near r = D/2
(x = 0,525). Let r(Max) be the r-value of the maximum of p(r). For any devi-
ation from spherical shape, the ratio M = r(Max)/D decreases in the following
sequence: globular particles, flat particles, rod-like particles. These findings can
be rationalized with the following considerations: long distances contribute in
globular particles from three dimensions, in flat particles from two dimensions
and in rod-like particles only from one dimension. '
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B. Rod-like Particles

An important class are particles elongated in one direction which have a constant
cross-section of arbitrary shape (long cylinders and prisms). The cross-section
A (with maximum dimension d) should be small in comparison to the length L
of the whole particle

d<L L =D*—d)"*~p 3)
For such particles, p(r) will increase linearly with decreasing r-values, starting
from r = L. p(r) is given by
p0) = = [, [, prdndedx = -og2a0-n @
4 JrJalta Te 12 2 ¢

(see Fig. 3). This equation shows that the slope of the linear part is proportional
to the square of the area of the cross-section:

dp _ A*-pk
tameg = —— = ——— (5
dr 2 ®)
T
S
I‘- |
A .
2-
b
1L
I c
L 1 1 1
ry 100 200 300 400 500
—eeely [

FIG. 3. Distance distributions from homogeneous prisms with edge lengths of: (a) 50:50:
500 A;(b) 50:50:250 A; (c) 50:50:150 A.

In principle, Eqn (5) can be used to determine the cross-section area A from the
slope of the linear part of p(r) for rodlike particles, if the particle electron
density p, is known. However, since the linear part of p(r) will be sensitive to
errors in the innermost part of I(k), application of Eqn (5) requires a very
critical consideration of systematic errors in this region (extrapolation to zero
concentration etc.).
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Deviations from Eqn (4) appear as soon as the approximations of Eqn (3)
break down, ie. as soon as the dimension of the cross-section is no longer
negligibly small. The p(r) function has a maximum in the 'tegion 0<r<d
(the actual position depends on the shape of the cross-section and on the ratio
d/D) and is linear for r >d (see Fig. 3). Test calculations have shown that
an approximate limit for the occurrence of a linear part can be found from the
condition

D
7725 (6)
(see Fig. 3).
The point of inflection r; (Fig. 3) between the maximum and the linear

region gives a rough indication for the size of the cross section. This is illustrated
with a few examples in Table 1.

TABLE 1
ry as a Function of the Dimensions for Various Prisms
Cross-section dimension Length [A] Distance corresponding to the
[A] point of inflection [A]
50 x50 150 52
250 52
500 52
40x 40 400 42
80 x 20 400 78
160x 10 400 155

It should be emphasized that r; is usually difficult to determine exactly,
particularly for particles near the limit given by Eqn (6). r; has a clear-cut
geometrical meaning only for circular cylinders, for which it is equal to the
diameter.

The scattering curves of rod-like particles show a pronounced central maxi-
mum and broad side maxima, depending on the size of the cross-section (Z.(%))
(Fig. 4). The cross-section intensities /(%) drop to zero in the Guinier range,
caused by the finite length of the particles.

This impedes the accurate determination of the radius of gyration of the
cross-section R.. The distance distribution function of the cross-section p.(r)
can be calculated with Eqns (32), Chapter 4 if f(h) is known up to sufficiently
large angles to include some of the subsidiary maxima originating from the
cross-section. The termination effect of such calculations is always appreciable
(Chapter 4, Fig. 9). The function p, drops to zero at r = d.
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FIG. 4. Scattering intensity of a homogeneous prism with edge lengths of 50:50: 250 A.

C. Flat Particles

The form of the p(r) function of flat particles, i.e. particles elongated in two
dimensions (discs, flat prisms) is more complicated. An analytical expression
can be given for infinite thin circular discs (Porod, 1948)

p(r) = %x (arc cos x —x/(1 —x*), x = % @)

Intuitively, one can rationalize the main features with the following con-
sideration: let us take a point in the centre of the lamella (Fig. Sa—c). For very
small values of 7 (r <d; d = thickness of the lamella), p(r) will increase with the
second power of r, since the number of distances is proportional to the surface
of a sphere with radius r (Fig. 5a). If 7> d, most of the sphere lies outside the
lamella and p(r) will increase roughly linearly, since the intersecting plane
between lamella and sphere approximates a circular cylinder for r > d (Fig. 5b).
Figure Sc illustrates the situation for still larger r-values; if the centre of the
cylinder is near the edge of the lamella, some of the cylinder will lie outside
the lamella (“boundary losses™). Evidently, these boundary losses increase with
increasing r, and eventually cause p(r) to drop to zero for r=D. It should be
emphasized that the above “linear” range usually can not be observed, since the
boundary losses are effective also at small 7-values.

Thus, we expect a quadratic increase for the region r<d, a more or less
linear increase for r>d (first term of the power series in Eqn (7)) and a drop
to zero at r = D. This is shown in Fig. 6a for 3 lamellae of different thickness d.
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{a) (b) (c)

FIG. 5. Distances in a lamellar particle.

The transition at r = d cannot be seen clearly in this plot, but a convex behaviour
at r > d can be recognized distinctly.
The situation becomes much clearer if we use the function

10) = 40y r = 22

(®)

This function is more useful for lamellar particles than p(r). Values of f(r) for
the lamellae in Fig. 6a are plotted in Fig. 6b. As expected, the curves start with a
linear increase. At r = d the curves become almost linear, the slight decrease is
due to boundary losses. The thickness d of the particle can be read from the
transition point.

The limiting value 4 of the function f(r), resulting from an extrapolation of
the quasi linear part towards r = 0, contains information about the area of the
basal plane of the lamella, according to

2 2 2 2
pa (2ar-d poF+d ‘V-d
A= f(r)lr—n) = ‘;c' an do = =¢ 5 = Pe 5

&)

The extrapolation to r =0 is the more accurate the larger the ratio D/d (see
Fig. 6b). In practice, the shape of the function f(r) will allow the recognition
of a lamellar particle and the determination of its thickness.

The transition from elongated rods with compact cross-sections to elongated
lamellae is demonstrated for the example of three prisms (with edges a, b, ¢)
with constant cross-section (a* b = const.) and constant length ¢ = L (see Fig.
7a). The ratio of the edge length is: (1) 4:4:40, (2) 2:8:40 and (3) 1:16:40.
The corresponding p(r)-functions show a linear descent with the same slope
dp/dr since all the particles are elongated, have the same cross-section and fulfill
condition (6). The increasing dimension of the cross-section from (1) to (3)
causes a decrease in the length of the linear descent and a shift of the maximum
to larger r-values. The increasing lamellar character can be seen from the f(r)
functions in Fig. 7b. The quadratic prism (1) does not indicate any lamellar
structure, whereas the lamellar shape of prisms (2) and (3) can easily be
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recognized. The thickness d and the basal area A, = b *c can be estimated. As
mentioned above, the point of inflection r; gives an approximate value for the
larger edge length. It should be emphasized that such a clear-cut direct classifi-
cation is not, possible in reciprocal space.

Figures 8a and 8b give a comparison between a globular particle (sphere
r=19,1 &), a rod-ike particle (prolate ellipsoid with semi-axes 10:10:30) and
a flat particle (oblate ellipsoid with semi-axes 23,2:23,2:4,6), all having the
same number of excess electrons (/(0)) and the same radius of gyration (Fig.
8a). The ellipsoid have a larger maximum dimension D than the sphere and
their ratio M for the position of the maximum is smaller. These properties are
most significant for the prolate ellipsoid. The corresponding p(r) function can
be classified as a rod-like particle with varying cross-section, indicated by the
nonlinear descent towards r = D. The point of inflection r; indicates a mean
diameter of 18 A.

The oblate ellipsoid can be recognized as a flat particle by a consideration of
f(r) (Fig. 8b). Its mean thickness (obtained from the position of the transition
point) is about 8 A. This function, however, does not indicate the variable
thickness. The difference between the oblate ellipsoid and a similar prism
(35,8:35,8:8,2) are so insignificant that they may be within experimental
errors (see Glatter, 1979). The distance distribution of the sphere can be classi-
fied as a globular particle (large M-value). The spherical symmetry can be
detected in reciprocal space or from p(r) by the application of the deconvolution
technique indicating a homogeneous sphere. The zeros of the scattered intensity
and the height of the subsidiary maxima give an indication for a homogeneous
sphere in reciprocal space too. The decrease of the M-value for the ellipsoid
leads, in reciprocal space, to a diminution of the decrease of the main-maximum
as compared to the sphere. The classification of the two ellipsoids is not so
clear-cut in reciprocal space. Using the Guinier plots for the cross-section inten-
sity I.(n) and the thickness intensity /,(%), it could be possible to classify the
prolate ellipsoid as a rod-like particle and the oblate ellipsoid as a flat particle,
but this division is not unambiguous.

D. Composed Structures — Aggregation, Subunits
1. DIMERS

The formation of dimers can be analysed qualitatively with the p(r) function.
An illustrative example is given in Fig. 9a-d. A prolate ellipsoid with axial ratio
1:1:2 is taken as monomer. The p(r) function of the monomer indicates an
elongated particle with decreasing cross-section toward the ends. The difference
distance distribution of the lines connecting the two subunits in the dimer
results from the subtraction of the distance distribution of the two monomers
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FIG. 6.(a) p(r) functions of lamellar particles with the same basal plane (100 X 100 A) and
varying thickness d. (a)d = 10 A; (b) d = 20 A and (c) = 30 A.

from the distance distribution of the dimer. The difference between the parallél
(Fig. 9a) and the linear arrangement (Fig. 9b) is obvious. Almost all of the
difference distribution of the parallel arrangement lies within the distance
distribution of the monomer, whereas the linear arrangement contributes up to
twice the maximum dimension of the monomer. The two rectangular configur-
ations of T-type (Fig. 9¢) and L-type (Fig. 9d) lie between the linear and parallel
arrangement. The maximum of the difference distribution is at larger r-values
for the L-type than for the T-type. For such a rough analysis it is not necessary
to have an exact shape analysis of the monomer.

The hump at large r-values is typical for dimers whose constituent monomers
can still be recognized, otherwise the hump disappears like in the case of axial
aggregation of cylinders. Similar analyses can be carried out for the formation of
dimers from globular or lamellar monomers.
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——> f(r)=p(r)/r,
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FIG. 6.(b) The functions f(r) =p(r)/r of the particles described in (a). The transition
points are signalled by the vertical dashed lines.
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FIG. 7. Three prisms with constant length L (400 A) and a constant cross-section but
varying length of the edges: 40X 40A; —-—-— 80X 20A;----160 X 10A.
Part (a) p(r) function. Part (b) f(r) = p()/r.
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FIG. 8. Comparison of the p(r) and f(r) function of a sphere ( ), a prolate ellipsoid of
revolution 1:1:3 (—~-—.— ), an oblate ellipsoid of revolution 1:1:0,2 (— ——) with the same
radius of gyration. (a) (above) p(r) function. (b) (below) f(r) function.

Higher aggregates can generally not be classified unambiguously. Additional
information from other sources, like the occurrence of symmetry, can simplify
the problem.

In reciprocal space we can use only the radii of gyration R, R, and R, for a
rough classification.

2. SUBUNITS

Particles which consist of aggregates of a relatively large number of identical
subunits show the overall structure of the whole particle at low resolution. At
larger angles (high resolution) the influence of the individual subunits can be
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FIG. 9. Distance distribution function p(r) from dimer models built from prolate ellipsoids.
monomers, — - —— dimers, difference between dimers and monomers. (a)
parallel formation, (b) linear formation, (c) T-type, (d) L-type.

seen. In the special case of globular or spherical subunits, it is possible to deter-
mine the size of the subunits from the position of the minima of the corre-
sponding shape factors (Glatter, 1972). The p(r) function shows inter-subunit
distances convoluted with the p(r) function of the form factor (Glatter, 1980).
More information: about the subunit-arrangement can be obtained from p(r)
if the scattering curve is divided by an approximate form factor (Glatter, 1972).
A common situation in practical applications is shown in the next example.
The enzyme DNA-dependent RNA polymerase is composed of four subunits
(Fig. 10). The structure of the subunits was known from earlier small angle
scattering experiments (Stockel ef al., 1979; Meisenberger et al., 1980a). Model
2 shows a possible configuration with a centre-to-centre distance of the two
larger subunits of 7nm as suggested by the preceding experiments. Comparison
of the corresponding p(r) function with the experimental data (Meisenberger
et al., 1980b) shows that the maximum is situated at larger r values for the
model. This maximum can be shifted to the right position by a reduction of the
centre-tocentre distance to 5 nm (model 1).

E. Chain Molecules
Methods of interpretation for this type of molecules are discussed in detail in

Chapter 12. The scattering curve of a worm-like chain can be approximated by
the Debye formula
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FIG. 10. Comparison of the experimental p(r) function of a core enzyme o o o (Meisenberger
et al., 1980) with the theoretical one of model 1 ( ) and model 2 (——-).
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FIG. 11. (a) (above) Scattering function of a chain molecule according to Debye in a I(h) - h?
versus h plot. (b) (below) The corresponding distance distribution function.
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2
i(h) = const.? [e*—1+x] - (10)
with x = R?+ h%. The scattering curve shows a linear plateau for large % values
in a plot I(k)+ h?® versus h (Fig. 11a). The corresponding distance distribution
function is shown in Fig. 11b.
I11. Hollow and Inhomogeneous Particles

A. Globular Particles

1. HOLLOW SPHERE

The hollow sphere is the hollow particle of greatest practical importance. The
distance distribution function is known analytically (Glatter, 1979):

-

4
0> ?”(Rg—-R,?)rz—(RhR?)n-ﬂ+%-r5] 0<r<(R,—R)
ML, wmry<r<an
2 w 2 272 4m 3,2
p(r) = { o2 E(Ra —Ri) R
-F7rR?-r3—{12-r5] 2R;iSr<(R,+R)
4
02 ?ﬂR?z-rz—R;‘;‘rrr:l +%rs] (Rs+R)<r<2R,
a1n

if R; is the inner radius and R, is the outer radius (2R, = D).
For thin spherical shells we can write

d=R,—R;, R,=R,,+dl2 and R;=R,,—d/2 (12)
Substitution into (11) yields

217, )
p(,)=p3.2ﬂ.Rgn.Jz.r~%_‘?.r (13)

for the linear part (second row in Eqn 11).
The limiting case of a very thin spherical shell corresponds to a special case of
a flat particle. Therefore, it is interesting to study its f(r) function. The linear

region is horizontal due to the special shape of this body (in analogy to Eqn (9)),
the height of this plateau is given by Eqns (11) and (12):
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FIG. 12. (a) (above) Hollow spheres — p(r) functions: D, is the outer diameter, d the thick-
ness of the shell. D,/d = 2 represents a full sphere, D, = 400 A. (b) (below) Hollow spheres
as in Fig. 12a, f(r) functions: A is the height of the plateau.

m vd
A = p¢r S (RG—RY? = pg-2mRd* =~ p; — (14)
The transition from a thin-walled sphere to a full sphere is shown in Fig. 12a and
Fig. 12b.
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The scattered intensity of hollow spheres is very similar to the scattered
intensity of a homogeneous sphere and can be expressed analytically as
3 sin (AR,) — hR, cos (R,)
¢ (hR,)?

_R3 sin (#R;) — hR; cos (hR))|?
' (hRy)?

I(h) = pi-167*|R

1s)

The height of the side maxima increases with increasing R;. The “degree of
hollowness” R;/R, can be determined from this height only if one is sure that
the particle under examination is a homogeneous hollow sphere.

2. SPHERICAL MULTILAYER MODELS

Distance distribution functions of spherical multilayer models with alter-
nating signs of the excess electron density are illustrated in Fig. 13. The rough
qualitative conclusions that can be made from the p(r) function are as follows:
under the assumption of a compact structure, the occurrence of minima in the
p(r) function signals the existence of regions of electron density with alternating
sign. The number of such regions is equal to the number of maxima in the p(r)
function, provided the particles are spherical (sharp minima in the scattering
curve) and the shells have approximately the same dimensions (thickness). The
radial electron density distribution can be computed from the p(r) function by
means of the convolution square root technique described in Chapter 4.

B. Rod-like Particles
1. RADIAL INHOMOGENEITY

The p(r) functions of an elongated cylinder with constant electron density
along the cylinder axis and varying electron density of cylindrical symmetry
P(x) (x is the distance from the cylinder axis) are shown in Fig. 14. The p(r)
function differs from the one of a homogeneous cylinder for r-values smaller
than the cylinder diameter. A linear descent at large r-values can still be observed.
Its slope is given by the equation

dp _ A%-p:
= -F _ 2 Fe 16
tan & dr o (16)
A is the area of the cross-section and
N 1
pe = 7 |, Pt of a7
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FIG. 13. Spherical multilayer models with constant outer diameter of 200 A. p(r) functions
in the left part, electron density profiles in the right part of the figure.
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FIG. 14. Circular cylinder with a constant length of 480 A and an outer diameter of 48 A.
(a) Homogeneous cylinder, (b) hollow cylinder, (¢) inhomogeneous cylinder. The p(r)
functions are shown on the left side, the corresponding electron density distributions
p(x) on the right side.
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If we compare the homogeneous cylinder with the hollow cylinder we see that
the maximum of the p(r) function of the hollow cylinder is located at larger
distances, since the small distances from the core are missing. The slope of the
linear descent is lower due to the smaller cross-section area. The p(r) function
of the inhomogeneous cylinder shows a negative region, i.e. there are distances
which connect regions with opposite signs more frequently than regions with
the same sign. The maximum is caused by the outermost shell (see hollow
cylinder). The linear descent is always positive, even if 5, is negative. The linear
region coincides with the abscissa if p, = 0. This would be the case in the
evaluation of the structural term p,(r) (Is(%)) in the contrast variation method.
Again, the scattering curve I(#) is of no practical importance for the classifi-
cation. If the p(r) with its linear descent has allowed us to classify the experi-
mental data as scattering data from an elongated cylindrical particle we can
calculate the cross-section distance distribution function p.(r) (Eqns (31) and
(32) in Chapter 4). Assuming cylindrical symmetry (indicated by distinct side
maxima in the I,(h) function) we can again compute the radial electron density
distribution p.(7) in a straight-forward manner with the convolution square root
technique from p (7).

2. AXTAL INHOMOGENEITY

Particles with a homogeneous cross-section but with inhomogeneities along
the long axis show a modification of the p(r) function in the whole range of
definition 0 <r<D. Periodical changes of the electron density are assumed in
the model shown in Fig. 15a: its p(r) function is compared with p(r) for a
homogeneous cylinder having the same mean electron density. The corre-
sponding scattering functions are shown in Fig. 15b. The periodical changes in
the electron density lead to the periodical ripples in p(r) and to sharp maxima
in I(h) which could be explained as broadened reflections of odd orders. In
the special case p =0 (internal structure term p,(r) in the contrast variation
method), one observes a p(r) function that deviates from zero in the whole
range 0<r<D. Oscillations about the linear descent can also occur for
cylinders with homogeneous electron density but varying cross-section, like a
linear assembly of spheres. In this case the p(r) function can be constructed
from a set of equally spaced delta functions with linear decreasing coefficients,
convoluted with the distance distribution of a pair of spheres with the corre-
sponding mutual distance.

Inhomogeneities which are mixtures of the axial and radial type (real two-
or three-dimensional functions) can not be interpreted without additional
information.
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FIG. 15. Inhomogeneous circular cylinder with periodical changes of the electron density
along the cylinder axis compared with a homogeneous cylinder with the same mean electron
density. (a) above p(r) function; (b) (below) scattering intensity, inhomogeneous
cylinder, - — - homogeneous cylinder.

C. Flat Particles

1. CROSS-SECTIONAL INHOMOGENEITIES

Lamellar particles with varying electron density perpendicular to the basal
plane, i.e. p=px) (x is the distance from the central plane) show properties

5. INTERPRETATION 187

pl(r) —=

100 200 300

[ —a

FIG. 16. p(r) function of a lamellar particle. The full line corresponds to an inhomo-

geneous particle, pg(x) is a three-step function with the values + 1, — 1, + 1. The broken
line represents the homogeneous lamella with p = + 1.

similar to that of rodike particles with radial inhomogeneity. The p(r) function
deviates from the p(r) function of the homogeneous lamella between 0 <r < T
and can be negative in this region. An example is given in Fig. 16. The p(r)
function coincides with that of a homogeneous lamella of the same dimensions
and the same mean electron density for r > T. The function p,(r) (5, = 0) drops
to zero behind r = T. To obtain the extrapolated f(r) function Eqn (9) has to be

modified as follows:
pi-A-T* _pi-V-T

B = fOlmo = 5 = P (18)
with
B 1 (TR
pe = 7 |, Pi0) dx (19)

Again we can calculate the cross-section functions p,(r) with Eqns (34) and (35)
in Chapter 4 if the lamellar structure has been realized from the f(r) function
and the convolution square root technique gives the best symmetrical approxi-
mation for p,(r).

2. IN-PLANE INHOMOGENEITY

Lamellae with a homogeneous cross-section but inhomogeneities along the
basal plane have p(r) functions which deviate from p(r) of the corresponding
homogeneous lamella (with the same mean electron density) in the range of
the whole particle 0 <r < D. The amplitude of oscillations is a measure for the
degree of in-plane inhomogeneity. The general problem — cross-sectional plus
in-plane inhomogeneities — occurs in the study of membranes: these particles
show a pronounced cross-section structure with additional in-plane inhomo-
geneities (see Chapter 10).
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D. Spherical Vesicles

Inhomogeneous spherical vesicles can be discussed as thin inhomogeneous
hollow spheres or, in a rough approximation, as bent flat particles. We shall
content ourselves with a discussion of vesicles with spherical symmetry, i.e.
p = p(r). Under this assumption, the distance distribution functions p(r) and
f(r) deviate from the corresponding functions of a homogeneous particle (with
the same dimensions and the same mean electron density) within the two regions
0<r<d (d=R,—R);) and 2R;<r<2R,. In this special case one can calcu-
late the function P(r) according to Weik (1974) (see Chapter 4, Section III. E3).
The function P(r) has two non-zero regions at 0 <r <d and 2R;<r<2R, and
is equal to zero wherever f(r) is horizontal (see Fig. 17).

]
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FIG. 17. p(r) and P(r) of a spherical vesicle when p(r) is an asymmetrical profile, generating
an asymmetrical P(r) function in the range 2R; <r < 2R,.

The scattering curve shows high frequency oscillations (according to the
dimension of the vesicle) modulated with a low frequency curve (according to
the density profile p(r)) (Fig. 18). The high frequency oscillations are apprec-
iably damped for spherical vesicles with a size distribution in the mean diameter
or for nonspherical vesicles and P(r) is smeared out in its second part (2R; <r <
2R,) for such particles. This second part must be known for the determination
of asymmetrical electron density profiles.

The limiting case of an infinitely large vesicle coincides with a lamellar
particle (for further details see Chapter 10).
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FIG. 18. Scattering function of the spherical vesicle defined in Fig. 17.

IV. Interparticle-interference, Concentration Effect

A general discussion of this effect is given in Chapter 2, Section V. No unique
mathematical description of this effect is available at present. There exist only
some qualitative considerations (Guinier and Fournet, 1955; Kratky and Porod,
1956; Porod, 1972). ‘

A. Liquid Type

This type of concentration effect occurs most frequently in practical small angle
work, and it can lead to a considerable distortion of the p(r) function: p(r) is
lowered (as compared to the isolated particle) for increasing r-values and passes
through a negative minimum in the region of the maximum distance D. At still
larger distances, p(r) shows damped oscillations about zero. This can be shown
theoretically for the so-called hard sphere model (Fig. 19a) and it is also found
in many experiments with nonspherical particles (see for example Fig. 6 in
Chapter 8).

The influence of the interparticle-interference on the scattering curve mani-
fests itself in a decrease of the scattered intensity at small angles (Fig. 19b). A
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FIG. 19. (a) (above) Distance distribution — hard sphere interference model. Theoretical
p() functions; — 6 =0, --- =025, ——-— 6=0,5, ———— 0= 1.,0.
Circles: Results from indirect transformation: 6 = 0,5, b, R = 2,0. 2% statistical noise,
Dpax =300A, AR, =0,5%, Al, =1,2%. (b) (below) Interference effect — hard sphere
model R = 100 A: Scattering functions for different concentration factors 8;6 = 89v,/v,.
—:9=0; A: 6 =0,25; 0: 6 =0,5; o: 8 =1,0. Dashed vertical line: termination for
indirect transformation (first data pointat’ - R = 2,0).
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rough approximation which yields a fair representation of the experimental
findings was given by Guinier and Fournet (1955) for the hard sphere model:

1
1+60-0(2hR,)’

6 = 81,/v, is the packing parameter, R, is the radius of the sphere and ¢(AR,)
is the scattering amplitude of a sphere with radius R,. The apparent radius of
gyration decreases with increasing concentration. The length of the linear range
of the Guinier plot can be extended by the interference effect for nonspherical
particles. Thus a long linear Guinier plot is no guarantee for the complete
elimination of the concentration effect. Remaining concentration effects cannot

be recognized in reciprocal space, but they can clearly be seen from the p(r)
function.

Igs(h) = const. $*(AR,) (20)

It should be noted that minima at zero angles could also arise from inhomo-
geneous particles, but their p(r) function ends with a positive part provided the
particle does not have a dipole structure.

Sometimes it is impossible to measure a series of concentrations, e.g. if
the structure of the particle depends on the concentration. In such cases one
can attempt to reduce the contribution of the interparticle interferences by
neglecting the innermost part of the scattering curve in the evaluation of the
experimental data. The problems of increasing termination effects can be over-
come with the indirect transformation method (Fig. 19a). However, if the

concentrations are high (8 > 0,5), the interparticle interferences can no more
be treated as perturbations which can be eliminated.

B. Gas-type

In this case one observes a tendency for particle aggregation and therefore an
increase in the p(r) function at large r-values, corresponding to an increase of
the scattered intensity at very small angles. A reduction of this type of inter-
ference effect by omitting the innermost data points is not possible and there
exist no general methods for the interpretation of such data.

V. Background

In a first approximation, the scattering background can be approximated as
a constant term. Elimination of the background can only be properly per-
formed if the scattering curve shows a A™*-course (™3 for slit smeared func-
tions). Neglect of background-eliminations leads to strong oscillations in the
p(r) function (conventional Fourier transformation) or to an increase of the p(7)
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FIG. 20. (a) (above) Scattering function of the three-step spherical multilayer model in Fig.
13. —— exact scattering function, — - — scattering function with an additional constant
background. (b) (below) Distance distribution functions computed from the scattering func-
tions in Fig. 20a with the indirect transformation method.

function at r = 0 if the indirect transformation method is used (see Fig. 20), but
the interpretation is not severely impeded by this increase at r = 0.

V1. Optimization of Model Parameters
The techniques for a classification of the experimental results were described in

the preceding part of this chapter. Once the right class of particle shape is found
from the p(r) function and the scattered intensity, one can start with model
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calculations and model refinement in order to obtain the optimum set of model
parameters.

A. Models
1. GEOMETRICAL MODELS

We can construct geometrical models which are defined by some model
parameters (triaxial bodies like sphere, ellipsoid, cylinder, prism etc. and com-
posed models). Parameters are quantities like the length of axes or edges, angles
between axes etc. More complicated models can be constructed by a combin-
ation of several smaller bodies.

2. MATHEMATICAL MODELS

A large number of three-dimensional structures can in principle be described
with spherical harmonics which are solutions for a special type of differential
equation (see Chapter 6). Sufficient convergence within a few coefficients can
only be expected for globular structures. In other words: the necessary restriction
to a small number of coefficients leads to a strong restriction of possible struc-
tures.

Both types of models (geometric and mathematical) represent an arbitrary
restriction to a limited number of solutions, and the model parameters cannot
be calculated directly in either case. They have to be optimized by trial and
error methods.

B. Parameter-fit
1. GEOMETRICAL MODELS

The traditional way for the parameter estimate for simple triaxial models
consisted of an optical comparison of model scattering function with the
desmeared experimental data in a plot which avoids the scaling problems (i.e.
logIvslog #). A large number of model curves for several triaxial bodies was
available from the calculation of Porod (1948) and Mittelbach (1964). The
difficulties in the optimization are caused by restriction to simple geometrical
models, by the existence of several local minima in a general least squares
technique and by the problem of error propagation.

The discussion of deviations between model and experimental data is more
convenient in real space (p(r)-function) than in reciprocal space. Another
possibility is the calculation of smeared model scattering functions and a fit
of the parameters directly on the experimental data (Sjoberg, 1978). The
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classification is difficult with this procedure, but the method is suitable for the
final steps of model refinement and it avoids the problem of error propagation.

2. MATHEMATICAL MODELS

A wide class of homogeneous particles (so-called star-shaped domains) can be

represented by
1 0<r<F(w) an
Pclr) =
) 0 elsewhere
where  is a unit vector defining the orientation. The boundary F(w) can be
expanded into a series of spherical harmonics Y, (w):

oo 1
Fw) =Y. Zlfsz,m(w) (22)
=0 m=-

where the fj,, are the unknown structure parameters. The corresponding scat-
tering function I(%) can be expanded into a power series

o ®  (—=1) o .
I(h) = ngo a, h*" = 4n n;) (-5(;1—_'_-)1—)' [L p(r) -r2"'dr] ‘hm (23)

There exists an analytical relationship between the coefficients a, and fp,
(Stuhrmann et al., 1977), but there is no direct way for the calculation of the
fim from the set of a,,, i.e. the expansion coefficients f;,,, must still be estimated
by an iterative trial and error procedure and the advantage of the possibility of
an exact analytical description cannot be used for a direct calculation of the
structure. The coefficients a, vary over many orders of magnitude and their
accuracy decreases with increasing n. The higher moments of the p(r)-function
(Eqn 23) depend highly on the outer part of this function, especially on the
maximum distance D. On the other hand, one has to deal with a rapidly in-
creasing number of unknowns f;,,, with increasing n, since / <n and — I <m <l.

The maximum number of model parameters N can be estimated roughly
from the range of registration. But one has to be very careful, because it is
possible to construct N parameter models which cannot be resolved. If we take,
for example, a spherical vesicle with a three step electron density profile we
have 6 parameters, but the width of the steps could be much smaller than the
resolution given by Eqn (27a) in Chapter 4. On the other hand, we may have
chosen a model that cannot fit the data with N parameters, for example, if we
use spherical harmonics for the representation of a long cylinder.

Anyhow we must bear it in mind that we cannot determine models with
many more parameters than N. In such cases we must have additional infor-
mation about the subject under investigation.
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VI1I. Conclusion

Summarizing Chapters 4 and 5 one can say that X-ray small angle scattering is
a matured technique for the investigation of non-periodic scattering media like
macromolecules in solution or inhomogeneities in a solid matrix. The mathe-
matical corrections and transformations necessary for the evaluation and inter-
pretation of experimental data can be performed with efficient computer
programs existing as well for standard applications as for special problems.
Therefore, there exist no basic problems avoiding the evaluation of scattering
data. The collimation effects can be eliminated and the necessary transformations
can be performed with sufficient accuracy in spite of the restricted range of
registration and the statistical errors.

Some integral parameters like the radius of gyration R, the molecular weight
M,, the volume V and so on can be computed directly in a straightforward
manner from the experimental data. However, the loss of information caused by
the spatial average do not allow a direct and unique determination of the struc-
ture of the substance under investigation but it is possible to make a rough
classification and to distinguish between globular, cylindrical and lamellar
particles. This discrimination could be improved by an orientation of the particles
in solution. The theoretical fundamentals for small angle scattering from solu-
tions of flow-oriented colloidal particles have been published by Sjoberg (1980).
The research activities are going on in the direction of experimental applications.
Such experiments could bring a considerable progress and would be a basis for
a comparison and combination of X-ray small angle scattering and quasi-elastic
light scattering.

In the case of inhomogeneous particles it is possible to calculate the electron
density distribution under the assumption of special symmetries. This would not
be possible for asymmetrical objects. The information content about such
systems can be increased considerably by the contrast variation method (see
Chapter 6). The contrast can be varied much more for neutrons than for X-rays.

The situation is the same for triangulation measurements. With such experi-
ments one tries to determine the mutual distance between regions of high
scattering cross-section (i.e. high contrast). This technique has been developed
for X-ray small angle scattering by Kratky and Worthmann (1947) and by Hoppe
(1972, 1973). The synthesis of special heavy-atom markers allowed an appli-
cation to biological macromolecules (Vainshtein ef al., 1980), but the method
was applied with great success only in the field of neutron small angle scattering
(Engelman et al, 1975; Engelman and Moore, 1975; Stockel et al., 1977). The
next step after the rough classification of the experimental data is the refinement
of models. The models are designed taking into account additional a priori
information about the system. The corresponding distance distribution functions
and scattering functions are compared with the experimental data and the fit is
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optimized by variation of the free model parameters. There exist elaborated
general computer routines for the computation of model functions. The fitting
procedure can be rationalized by a standard least squares technique.

Models which do not coincide with the experiment must be excluded, agree-
ment of model functions with experimental data qualifies the model as a possible
structure, but one has to bear it in mind that there might exist other possible
structures if they cannot be excluded by additional information. '
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1. Introduction

Any elastic scattering process can in principle be used for structure determin-
ation of the target. This is also true if the molecules which give rise to the
scattering pattern are randomly oriented. The well known Debye equation

i) ~ ):Zf.»ﬁs‘“""‘ 7l )

i=0j=0 r;|

relates a molecule characterized by N atoms with the form factor f located at
r; to the scattering I(h). This equation has originally been derived to explain
X-ray scattering by gas molecules. It is the starting point of any analysis of
gas-like systems.

Thermodynamics emphasize the close relationship between the properties
of gases and dilute solutions (H. Eisenberg, 1968). As [(0) is proportional to
the square of the number of atoms in a molecule it is not surprising that the

197
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scattering pattern of macromolecules relatively early attracted the attention of
X-ray diffractionists. Macromolecules consist of thousands of atoms. We want
to turn our attention to that class of macromolecules which have a rigid struc-
ture and it is also assumed that the solution contains only one kind of molecules.
Such a solution could be prepared by dissolving a protein crystal.

It is true that crystallizing proteins have been objects of research in small
angle scattering. However, there is a wide class of biomolecules which share the
purity of dissolved crystals but which do not (yet) crystallize. These are the
structures of increased interest in small angle scattering of solutions. As there
is high biochemical evidence that a purified active protein consists of equal
molecules the question for structure determination can be justified. However,
this raises the next question: what can we expect from small angle scattering?
The amount of information which can be obtained from small angle scattering
has been estimated by Luzzati (1979). It appears that a small angle curve might
yield about 20 to 30 parameters of the macromolecular structure.

This very encouraging finding opens the next question. Which of the thou-
sands of pieces of the macromolecular structure should we determine as we
dispose of only 20 to 30 from our small angle experiment? It is at this point
that the ways of small angle scientists become divergent. Depending on the
preference for certain classes of macromolecules the analysis will assume
different forms. There are integrals of the weighted small angle scattering
function and its transform which have a simple geometrical meaning, like mole-
cular mass, radius of gyration, volume, specific surface, mean curvature of the
surface. The latter ones are related to a specific model, the molecular shape.

The fact that shape determination is a very attractive way of analysing small
angle scattering reflects several typical assumptions: the reference to an atomic
structure as it has been assumed in Eqn (1) is abandoned. In addition, any
intra-molecular structure is either ignored or eliminated by some rough esti-
mations (i.e. by the assumption of the asymptotic A~ dependence of I(h) at
large k). As long as the resolution is not better than a few diameters of the
solvent molecules (5-10 A) the model of smooth macromolecular boundaries
can be made plausible (Ninio e? al., 1972; Fedorov et al., 1972).

IL. The Scattering Density

It is clear that small angle scattering is a method which in the best case can
determine a molecular structure at low resolution. It is therefore practical to
replace the atomic model by a function which describes the density of the
atomic form factors in a volume element. In the case of X-ray scattering, the
form factor is proportional to the number of electrons of the atom. Therefore
the electron density is a convenient measure of the potential encountered by
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a crossing X-ray photon or neutron. The form factors do not depend in a regular
way on the atomic number in the case of neutron scattering. The coherent
scattering lengths b vary as a function of the atomic number isotope and nuclear
spin state in an apparently irregular way, as neutrons are scattered by nuclei.
The scattering length of hydrogen is negative (— 0,372 <1072 ¢m) and that of its
heavier isotope deuterium is strongly positive (+ 0,67 -107"2 ¢cm). Carbon (b =
0,66+107? cm) and oxygen (b =0,58-107"2cm) have similar values, whereas
b of nitrogen (= 0,95-1072 cm) is one of the highest known in thermal neutron
scattering. For comparison we mention that the scattering length of one electron
in X-ray scattering is 0,28 -107*? cm. The scattering lengths of other atoms are
just multiples of this number. The scattering lengths in neutron scattering are
similar to those of the first row of the periodic table in the case of X-ray scat-
tering (Bacon, 1975).

With these numbers in mind we can calculate the scattering density of most
of the biomolecules. By definition the scattering density is given as the ratio
between the sum of coherent scattering lengths of nuclei (or atoms) divided by
the volume occupied by these atoms.

Zb;  [em] —
e Rt @

p =

For water we obtain in the case of X-ray scattering

6-10%
18

p = (2+8)0,28+1072 = 93-100¢m2

In the case of neutron scattering the calculation is similar: The scattering density
of H,0 is:

6-10%
18

p = [2(—=0,37) + 0,58] - 10'* = — 0,56 *10"°cm ™

The scattering density of D,0 is:

_ 6-10%
20

P *1,1[2+0,66 +0,58]-107"%? = +6,3-10' cm™

In a similar way scattering densities of more complicated molecules can be
calculated. It turns out that the neutron scattering density of biological material
(proteins, DNA, RNA, lipids) is in the boundaries of the scattering density of
light and heavy water (H. Stuhrmann, 1974). The relative scattering densities
with respect to water are similar with X-rays.



200 H. B. STUHRMANN
I11. The Multipole Expansion

The evaluation of certain structure parameters (M,, R, V etc.) from I(h) is a first
approach. A more systematic structure analysis will start from a Fourier series
where the consideration of a finite number of Fourier coefficients defines the
resolution. For a single molecule model the expansion of the excess scattering
density p(r) with respect to the solvent as a series of spherical harmonics Y},
appears to be natural (Stuhrmann, 1970a—c).

L 1
p() = E Z Iplm(r)Ylm(w) (3)
1=0 m=

r=(X,Y,Z2)=(r,w); L is an arbitrary number depending on the required
precision. w is a unit vector and r is the distance from the origin along the
direction of w. w represents the polar and the azimuthal angle. The angular
symmetry of the Y, is related to those of the multipoles: / = 0 (monopole),
I=1 (dipole), I = 2 (quadrupole), etc. There are 2m + 1 Y, for each / which
correspond to well known wave functions in spectroscopy: I=0 (s), /=1
(px,py and p,), I=2 (5d functions). However, the dimensions of the radial
functions p,,,(r) are much larger and they are calculated as projections of
p(r) onto the spherical harmonics

Pim(®) = [ p() Yim(w)deo (32)

The Fourier transform of p(r) is developed as a series of spherical harmonics
as well:

L 1
Al) = L L Apm(B)Yim(9) (4)
1=0 m=-1
h = (h, Q), h is the momentum transfer and £ is a unit vector in the reciprocal
space. The relation between the function A;,,(k) and p,,(r) is given by the
Hankel transform with spherical Bessel functions j; as a kernel.

5|72 ~
Aim(h) = (;) it L=Oﬂzm(?)fi(h")r2df (%)

The diffraction pattern of randomly oriented particles must be a mathe-
matical quantity which is independent of the actual orientation. From a vector
in three-dimensional space we know that its length is conserved on rotation
(i.e. * =x? 4+ y* + z%). Equation 4 describes A(h) in a space with more than
3 coordinates. Again, it is the scalar product which turns out to be e measur-
able quantity of small angle scattering (Stuhrmann, 1970a):
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I(h) = 2n% [A%(h) + A% () + . . .
L 1
=2 Y Y [Apm®P = U4l (6)
I=0m=-1

Equation (6) is equivalent to Eqn (1).

However, there are marked differences in the appearance of the Debye
equation of SAS and its multipole expansion. Equation (1) consists of N2 — N
distinct interference terms of weighted sine waves, originating from N volume
elements of integration of p(r). There are no distinct interference terms in
Eqn (6). Each partial structure p;,,(r)Y;,(w) produces its own small angle
scattering curve |4,,,,(k)|*. It appears that the analysis of /(k) cannot be unique,
as(different sums of |4,,,(k)I* yielding the same I(h) reflect different structures
p(r).

The analysis of I(h) in terms of multipole contributions to SAS is not
quite arbitrary. As A,,,(k) starts with #' only the monopole (I =0) of the
structure will give rise to SAS of zero angle. The scattered intensity at zero

angle is proportional to the square of the total excess scattering length of the
particle.

I0) ~ 2n* A%(0) = 4«[[ Poo (1)1 drr

2 2
= 4n J-r L)p(r, w)Yoo(w) drdw| = .fv p(r)d3r ™
Equation (7) is the basis of molecular weight determination.
At very small angles I(h) is described by a parabola:
I(h) =~ 1 —=4R*W* % ... (8)

After appropriate choice of the origin the first moment of the dipole terms
can be eliminated and the radius of gyration R is simply given by the second
moment of the monopole peo(r):

i J p(nr* d3r Ipm(r)r4 dr
R = =

©)
[er @ [pmt)ar

The coefficients associated with higher powers of h consist in general of more
than one multipole. Unless a certain model is preferred, there is no way to
attribute definite weights to various multipoles.
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A. Spherical and Isometric Structures

The easiest way to deal with the multipole expansion of small angle scattering
(Eqn 6) is to assume a spherical (monopole) structure:

I(h) = 20* AZ(h)

= 4n

o ; 2
[ o) 7 dr] (10)
Usually /(h) in this case exhibits a number of minima where I(h) is close to
zero. Other methods (e.g. electron microscopy) will be used to confirm the
spherical surface of the particle. Once the sequence of signs of the extremes
of Ago(h) is established, the sine transformation of Ago(h) yields the radial
density distribution pgo(r) of the sphere. This is a most useful result from small
angle scattering which cannot be obtained by other methods.

For isometric structures (viruses, lipoproteins, chromatin monomers) it is
necessary to add higher multipoles (/ = 5) to the predominant monopole term

(Finch and Holmes, 1967)

I 1 L
p(r) = ¥ P:o(’)l > ale!m(w)} = Y proH(w) (11)
1=0 m=-1 1=0
The coefficients a;,, determine the symmetry of the particle: their calculation
is described by Cohan (1958) for the icosahedral case. As the decoration is
often confined to a shell, the radial functions associated with spherical har-

monics of higher order can be approximated by

L
p0) = Zym a0+ L pid(r = R)He) (12)

The scattered intensity of this structure is

L
I(h) = 2n*{A% (M)} +4m ¥ piR%j}(HR) (13)
=1

which just gives the contribution of the /th spherical Bessel function. This is
often the case with spherical viruses, where the only important non-spherically
symmetric contrast at low resolution originates from the projecting tips of
protein subunits, all at essentially the same radius. For the evaluation of p(r)
from the transform of I(k), Chapter 4 should be consulted.

As pointed out by Klug (unpublished work cited by Finch and Holmes,
1967), the icosahedral symmetry of isometric viruses leads to a useful separation
of zero and higher order harmonics in their scattering patterns. Symmetry leads
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to “selection rules” for terms in the spherical harmonic expansion of a density
distribution or its corresponding Fourier transform. For the icosahedral case,
the permitted orders are given by I=6p + 10¢ + 15r(p, ¢, r=0,1,2,...)
(Laporte, 1948; Cohan, 1958; Finch and Holmes, 1967; Jack and Harrison,
1975). The first non-zero term is therefore /= 6. Highly subdivided icosahedral
surface lattices often have very weak low orders, so that the first strong, non-
spherically symmetric term in the expression may, for instance, be I = 18 or 20.
This is the case with tomato bushy stunt virus (TBSV), where the projecting
tips of protein subunits, clustered at twofold and local twofold positions,
provide the major source of low resolution contrast, besides the monopole
term (S.C. Harrison, 1969; Jack and Harrison, 1975).

The separation of the monopole term from the higher harmonics starts from
the observation that non-zero order terms become significant at spacings which
correspond to fractions of the diameter of the whole molecule. Often, however,
the zero order term obviously continues to dominate, and higher order terms
can be regarded as background. In PM2 phages, the bilayer so dominates the
density fluctuations that A2, (k) is the only clearly visible part of the scattered
intensity out to 25 A (Harrison et al., 1971).

B. The Shape of Compact Macromolecules

Particles of uniform density offer a welcome constraint of the general structure
p(r), as the multipoles p;,,(r) are no longer independent. Since at high contrast
the contribution of the internal structure of the particle to SAS becomes negli-
gibly small, the shape model is quite realistic.

Let us describe the outer surface of a compact protein molecule by a unique
function F(w) (Stuhrmann, 1970b, ¢, 1975; Stuhrmann et al., 1977)

p() =1 if 0<r<MAw)
(14)
= 0 elsewhere
The introduction of this model into Eqn (5) results in
2\1/2 1 F(w)
An(h) = (;) i Ir=o © Y (w)jfhr)r*drdw (15)

The relationships between the A, with different ! correspond to those of the
Bessel functions. The development of F(w) as a series of spherical harmonics
and j,(hr) as a power series is chosen in order to facilitate the integration of
Eqn (15). With

oo (_ l)p(hr)lﬂp

ithr) = 3-:‘., ?¥p 2 +p) + 1]

= dy(h)"?P
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integration yields

oo

2 1/2 I
- |= __._2_ (I+2p+3) 1, 1+2p
Aim(h) (ﬂ) L iiopralm T (16)

On introduction of A,,,(h) from Egn (16) into Eqn (6), the scattered intensity
results in a power series of h*:

I(h) = Y c,h*" (17)
where the coefficients ¢,, depend in a non-linear way on the parameters f},,, of

the structure (Stuhrmann, 1970b, 1970c; Stuhrmann et al., 1977):

¢n = cplfim} n=0,1,2,3
1=0,1,2,3,... —I<m<lI

(18)

The analysis of small angle scattering data in terms of shape models has been
applied mostly to globular proteins. This class of macromolecules does not
display any inhomogeneous density distribution at low resolution, thus justi-
fying a sharply contrasted black and white picture as a model for protein mole-
cules in solution. The coincidence of experimental and calculated scattering
curves proves that the suggested model is not wrong. In order to prove that it is
probably the right one, a thorough search for other possible models has to be
made. The investigation of the uniqueness can be made easier when expansions
of the shape as a series of functions (e.g. spherical harmonics) are chosen because
the resolution is well controlled by the number of coefficients taken into account
(Stuhrmann et al., 1977). The evaluation of f,,, from ¢,, is rather easily performed
in those cases where the structure in question does not differ too much from a
sphere. Long rods and extended sheet structures are less amenable to this kind
of analysis.

1V. Contrast Variation

Morphological studies of globular macromolecules by small angle scattering start
from the assumption that the scattering pattern originates from macromolecules,
the boundaries of which enclose regions of constant scattering density. This may
be a good approximation especially at low resolution if the mean scattering
density of the solute differs very much from that of the solvent. The scattering
density of the macromolecule then displays a sharp *“black and white” picture.
The relevant parameter which defines the quality of the picture is the contrast
p which is given as the difference between the mean scattering density of the
dissolved particle and the solvent:

p = 5solute — Psoivent (19)
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Equation (15) also holds for each volume element: the excess scattering density
of the solute therefore is

p(’) = p(r)solute - p(’)solvent = p(r)solute — Psolvent (20)

There are two states of p(r) which are very different. At very high contrast,
precisely speaking at infinitely high contrast, the inner structure of globular
particles is no longer contributing to small angle scattering. The other state
concerns the appearance of p(r) at vanishing contrast. The fluctuations of the
intramolecular density distribution around the mean scattering density of

the solute are then rendered visible. It is therefore an appealing idea to define
(Stuhrmann and Kirste, 1965)

p(r) = b p.(r) + py(r) (21

where p(r) and p,(r) represent the molecule at infinite and zero contrast respec-
tively.

p.(r) is the space excluded to solvent molecules. In the case of neutron
scattering of proteins in H;0/D,0 mixtures the influence of dissociating protons
has to be taken into account. As the H/D exchange ratio of the dissociating
hydrogens of a protein depends on the H,0/D,0 ratio of the solvent, effects
of H/D exchange will modify p.(r). If one starts with p,(r) having a particular
H/D composition due to the H,0/D,0 composition of the solvent, then the
increase in p(r) will be less than a given decrease in solvent density in those
parts of the solute molecule that contain exchangeable hydrogens. This effect
is taken into account by p.(r) <1. If the density of exchangeable protons of
the solute equals that in the solvent, p,(r) will be zero. p.(r) remains unity in
those volume elements not occupied by water and exchangeable hydrogens.

By Fourier transformation, the amplitude A haq the same form as p(r)

A(h) = pAc(h) + A (h) (22)

Using Eqn (6) the contrast dependence of small angle scattering follows a
quadratic polynomial in p:

I~(AlA) = (pA, + A |pA, + Ay
PHAJNAD + PANA) + (A4 +(A,lA,) (23)
P2 1(h) + b Is(h) + I(R)

In Eqn (23) a real contrast has been assumed. There are some nuclei (e.g. Cd**?,
Gd's7, Sm'#) which undergo resonant scattering at thermal energies of neutrons.
Due to an additional phase shift during the scattering process, the scattering
length b is no longer a real number but gets its adequate description by a
complex b

b= bot+d' +ib"
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where b’ and b" are the real and imaginary parts varying strongly with the
wavelength in the resonance region and b, is encountered far away from the
resonance. With X-ray scattering this phenomenon is quite common to all atoms.
Near their X, L and M absorption edges the atomic form factor will show an
anomalous dispersion which is due to electron transitions of the K, L or M shell
of the atoms. The magnitude of the corresponding f' and f" are similar to those
of &' and " in the case of neutron scattering and amount to 5 to 15 electrons
(Phillips et al., 1978).

Assuming a complex scattering density g’ + ip" in a region p,(r), Eqn (21) is
extended:

p(r) = [Popc(r) + py(r)] + (B +ip") " polr) (21a)

Small angle scattering as described in Eqn (23) will change into a slightly dif-
ferent form.

I(r) = (5" + ") 1o(h) + B’ [Pole(h) + Los(R)]
+ [D31(h) + Bl oo(h) + I,(h)] (232)

I(h) is the scattering function of anomalous scatterers. Io.(h) and I(h) are
cross terms resulting from the convolution of p,(r) with p.(r) and p,(r) respec-
tively.

Equation (23a) is quite general. For instance, it may be used when the
configuration of heavy atoms in a protein is going to be studied.

If anomalous scatterers are distributed homogeneously over the whole
excluded volume p(r) or in the solvent, then p,(r) becomes equal to p.(r). The
excess scattering density then is described by

p(r) = (Bo+ 8" +ip") pc(r) + py(r) (21b)
and Eqn (23a) is reduced to

I(h) = [(Bo +p7)? + p" 1 (h) + (Bo + "M (h) + I(h)  (23b)

It appears that the real part of the structure factor is most interesting in the
complex contrast variation (CCV) method, as there is no linear dependence of
I,.(h) on the imaginary part of 5. The advantage of the CCV method compared
to other methods of contrast variation may be considerable as no chemical
changes of the solution are involved. Very often the mean density of proteins
can be matched by addition of sugar (5, = 0). Then, for instance, the contrast
in a sugar solution containing RbBr could easily be varied near the K absorption
edges of rubidium (Ax = 0,815 A) and bromine (Ag = 0,920 A). Synchrotron
radiation is most convenient for the selection of arbitrary wavelengths.

From Eqn (23) it appears that the measurement of I(h) at three different con-
trasts (i.e. scattering densities of the solvent) is sufficient for the determination
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of the basic scattering function I.(k), I(h) and I, (k). In practice about ten
different solvent densities are chosen in order to evaluate the basic scattering
functions.

I(h) is the shape scattering function which can be used for shape deter-
mination as described before. [ (k) can be measured directly at vanishing
contrast. Appropriate solvent mixtures can be very often achieved. However,
H,0/D,0 mixtures are most convenient for matching the density of the particle
(Stuhrmann et al., 1975; Stuhrmann, 1979).

Is(h) is the transform of an averaged convolution square of the internal
structure py(r) and the shape p.(r). Contrary to I,(h) and I,(h) which are real
scattering functions, the mixed term [ (h) can assume positive and negative
values.

Contrast variation is a low resolution method. As the shape factor 1 (h)
decreases with & at greater angles its influence is usually no longer measur-
able at h+D > 30. I(h) is dominant in the wide angle range. The method of
contrast variation has been developed independently in protein crystallography
(Bragg and Perutz, 1952) and in small angle scattering of protein solutions
(Stuhrmann and Kirste, 1965).

It has been of transient interest in protein crystallography where it has been
replaced by isomorphous heavy atom replacement. The contrary was the case
for small angle scattering, where the low resolution quality of this method did
not present an additional drawback at all. With the availability of powerful
neutron sources contrast variation has now become a still flourishing technique
in neutron small angle scattering (H. Stuhrmann and A. Miller, 1978).

There are a few relationships between the basic scattering functions which
may be useful for both checking the consistence of the data and establishing
a symmetry of the structure p(r). From Eqn (23) the following inequality can
be derived:

W es(I) < 2[Lc(h) ()] (24

For spherical particles, that is if p(r) = poo(r) (4m) Y2, the inequality (24)
becomes an equation.

I(h) ~ A%(h) = [8AQ(R) + AR )] (25)
The linear dependence of the square root of /(h) on f is a necessary condition
for the absence of higher multipoles with /# 0 of p(r). The choice of sign is
relatively easy if data from contrast variation are available. In general p(r) will
be positive and therefore A§o(0) must be positive too. If I (k) changes its sign
at hg, either A5y (h) or A3 (h) will change its sign. At least one of the functions
I.(h) and I (k) should have a minimum at fo. As long as the minima of I.(k)
and I,(h) do not coincide at hy, determination of the sign 4§ (h) and Ago(h) is
quite unambiguous. This has been used in the study of lipoproteins and spherical
viruses (Stuhrmann et al., 1975).
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In a similar way equations for the contrast dependence of more than one
multipole can be written. The redundance of the data will be lost, which makes
any conclusions less reliable. For non-spherical particles the analysis is very
often restricted to the contrast dependence of zero angle scattering and of the
radius of gyration.

A. Zero Angle Scattering

Since at & = 0 only the monopole term (I = 0) of p(r) enters into (k) the square
of zero angle scattering is a linear function of the scattering density of the solvent:

mmwzwmm=ﬁmmr:ﬂﬁmm%=ﬁn (252)

Strictly speaking, this is only true if the scattering amplitudes of the atoms are
real numbers, since

A(0) =X b;

If nuclei or atoms with complex scattering lengths (anomalous dispersion) are
present in the solute or the solvent, then Eqn (20) contains complex numbers.
The square root /(0) is no longer a linear function of the solvent density

(1] ~ A(0) = [(Bo +5)* +5"*]"4.(0)

In the following considerations the complex parts of the contrast are dropped.

If p(r) =1 inside the protein molecule, then ¥, equals to the real volume V.
As mentioned above, the contrast variation in neutron scattering is achieved in a
most elegant way by isotopic replacement of the solvent. In the case of aqueous
solutions, H,0/D,0 mixtures cover a wide range of scattering densities from
—0,56+10° cm™ with H,0 to 6,35+10'° cm™ with D,0. For both neutron
and X-ray scattering the scattering density can be changed by chemical replace-
ment of the solvent (addition of salts, sugars etc. to H,0 or H0/D,0 mixtures).
This in general will have a different influence on p.(r) and can be used to deter-
mine the inner solvation of the protein molecule. A very recent result from small
angle scattering of ferritin with X-ray synchrotron radiation showed that the
change of the structure factor of heavy atoms (iron) with the wavelength can be
used as well for contrast variation and in the sense of isomorphous replacement
methods (Stuhrmann, 1980).

A plot of the square root of the extrapolated zero angle scattering versus the
solvent results in a straight line, the intercept of which with the abscissa provides
the scattering density of the solute. This is also 7;(0). If the solution contains
macromolecules of different density then I(0) will reach a positive minimum
value at a solvent composition with a scattering density equal to the mean
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scattering density of the polydisperse solution. From the height of the minimum
1(0), the mean square deviation of the scattering density distribution can be
estimated (Stuhrmann and Duée, 1975).

B. The Radius of Gyration

Among the parameters of p(r) determined from small angle scattering the
squared radius of gyration

.[Jp(r)p(r')lr— r'|? d3rd3r
R = (26)
2 f Ip(r)p(r') d3ra®’

is most easily accessible (Eqn 8).
Inserting Eqn (21) into the definition of the radius of gyration gives

a B
R?* = R§+E“‘jz (X))

p

The constants independent of the contrast are:

a= Vlc.l‘ ps(r)r* d3r
b= 73 | [p)rer Era’y

R?

i
|

jpc(r)rz d3r

In a plot of R? versus 1/p the intersection with the ordinate gives R2, the
square of the radius of gyration of the molecular shape and from the tangent
of the curve in 1/5 =0 the second moment « of the spherical average of the
internal structure can be derived. If p(r) is approximated by a core surrounded
by a spherical shell, then it can be shown that & is positive if the shell has a
higher density than the core (e.g. proteins and more pronounced with lipo-
proteins and chromatin) and negative if the core has a higher density (e.g. in
ferritin, ribosomes). On the other hand, § is always positive; it describes the
displacement of the centre of mass as a function of the contrast (Stuhrmann
and Miller, 1978).

For complex contrasts (compare Eqn 23a) Eqn 27 will assume a slightly
different form:

(Po+p2) @ 1 B
(Bo +0)+5" Ve (Bo+p)+p" V&

R?* =R+ (27a)



210 H. B. STUHRMANN

often g will be large compared to the complex parts ' and p". Then Eqn (27a)

is reduced to
1 « 1 B

po+p Ve (Bo+p) V2

R* = R + (27b)

Recent small angle X-ray scattering experiments of ferritin with synchrotron
radiation have shown a marked dependence of the apparent radius of gyration
on the real part of the structure factor of iron near the absorption edge (A =
1,734 A) (Stuhrmann, 1980) (Fig. 1).

C. Isomorphous Replacement Methods

Contrast variation can be regarded as a special isomorphous replacement. The
label is given by the volume function p.(r), an admittedly very big label. A
label which is comparable in size to the structure is supposed to resolve p (r)
unsatisfactorily. The inequality of Eqn (24) demonstrates this fact. The advan-
tage of p.(r) as a label is its high scattering intensity /,(#) which can be mea-
sured easily. Heavy atoms as labels on the other hand would resolve the structure
much better. Though the role of heavy atom labels in small angle scattering
would not be of the same outstanding importance as in protein crystallography,
they still provide a net of heavy atom sites which reflect the three-dimensional
structure of the particle (Hoppe, 1972).

Heavy atoms have not been tried in small angle scattering until recently
when an intramolecular distance was determined using mercury labels (Feigin
eral, 1978). Anomalous dispersion effects might give similar results. Experi-
ments of the latter type are presently tried with synchrotron radiation.

With larger structures (e.g. ribosomes) the introduction of more powerful
scatterers is important. There are two ways of achieving this. (1) The scattering
length of one atom or the number of heavy atoms concentrated around a site
is increased. Higher scattering lengths for X-rays are encountered with certain
nuclei (e.g. 5’Fe at 144 KeV has a scattering length which is nearly 20 times
larger than that of the 26 electrons of the iron atom). However, this technique
has not yet become feasible as the resonance condition reduces very much the
probability of such a transition. (Mdssbauer et al., 1970). In principle synchro-
tron radiation can furnish brighter sources of Mossbauer radiation than radio-
active sources (Trammell et al., 1978). In practice the increase of the scattering
from a label is achieved by increasing its size.

Though this is not impossible with heavy atom complexes in X-ray scattering,
the isotopic replacement in neutron scattering still offers the easier way. (2)
Deuterated protein subunits in quaternary structures or deuterated proteins
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FIG. 1. Dependence of the apparent radius of gyration R of Ferritin on the wavelength.
_Nea.r_ the K-absorption edge of iron at the wavelength A k = 1,743 A, the real part and the
imaginary part of atomic form factor of iron change considerably. The variation of R
reflects the change of the real part f* of the form factor of iron only. From Eqn (23a) it can
be deduced that R =a + bf". The full line is f' as calculated from the imaginary part f" of

iron. f" is proportional to the absorption coefficient of iron, which has been measured
simultaneously with R.

in ribosomes are convenient labels which have become very useful in small
angle scattering. These labels are big enough in order to provide a measurable
signal in small angle scattering and they are small enough in order to be a useful
probe for structure resolution. So far it has been the practice to deuterate two
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distinct subunits 4 and B in a complex biomolecule, in order to determine the
distance d between their centres of mass. In order to measure the relevant

interference function

sin hd
hd

Ja(h) ~ (28)

it is necessary to measure four samples which differ in the deuteration of A
and B. Denoting deuteration by the index D and normal subunits by the index
H, J(h) is obtained as a superposition of four scattering functions (Kratky and
Worthmann (1947); Hoppe, 1972; Engelman and Moore, 1972)

J = [(Ap,Bp) +1(Ay,By)| — [l(Ap, By) + (Ay, Bp)] (29)

At low resolution J(k) equals J4(k). It has, however, to be emphasized that
J(h) does not only depend on the distance between the labels, as it has been
supposed for J4(h). J(h) is a two particle scattering function. How this fact
enters into the analysis becomes clearer from the consideration of the corre-
sponding distance distribution function.

We assume that the diameters of the subunits are much smaller than their
mutual distance. Then the measurable distinct distance distribution function
represents the projection of the mass of the subunits onto the connecting line.
This idea is still a good guide when the labelled subunits get closer to each
other. In order to make full use of the wealth of the interference function
J(h), it has to be measured with great accuracy. So far the precision of the
neutron scattering experiments allowed the determination of d only. In some
cases guesses on possible asymmetries of the subunits and their mutual orien-
tations could be made (Langer et al., 1978).

As the biochemical reconstitution methods for the introduction of deuter-
ated probes to a desired site are rapidly improving, it is possible to have a single
protonated protein in a deuterated environment. A lower proton content means
only small incoherent neutron scattering. Under these conditions small angle
scattering of single proteins in a ribosome can be measured and a structure
determination of ribosomal proteins in situ is at hand (Nierhaus et al., 1978).
As ribosomes consist of RNA and proteins, both components have to be deuter-
ated to such a degree that their scattering lengths become equal.

These conditions have to be established by intramolecular contrast variation.
In addition, the H,0/D,0 mixture (more than 90% D,0) has to be adjusted to
the scattering density of the deuterated ribosomal proteins and RNA. The
development of intramolecular contrast variation will contribute to the eluci-
dation of the internal structure of large biomolecules in a way that cannot be
achieved by variation of the solvent density only,
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In the following the main steps of a common SAXS measuring routine are
described, possible sources of errors are mentioned and suggestions are made
on how to avoid them. Besides remarks on the general measuring technique,
some special problems involved in the measurement of particle scattering in
solution are described. Peculiarities of other techniques recording the scattering
of solids, fibres etc. will be found in Chapters 12 and 14.
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1. Equipment

A. Sources of Errors of the Experimental Measuring Points
1. INTENSITY FLUCTUATIONS OF THE X-RAY SOURCE

Fluctuations of the primary intensity do not only cause errors when the
step scanning method is employed but also in the case of position sensitive
registration whenever a blank must be subtracted from the scattering.

Therefore, it is necessary to control the constancy by means of a monitor
as described in Chapter 3.1, or by an ionization chamber positioned in the path
of the beam, or by periodically repeated control measurements using a standard
scattering sample. Short time fluctuations will cancel out partially in the step
scanning mode when the curves are measured repeatedly and averaged.

2. INSTABILITY OF THE COUNTER POSITION

This problem arises only in connection with the step scanning method as a
consequence of the limited mechanical precision of the goniometer support
(c. £1um for high quality instruments). In the case of very steep curves,
especially if differences are to be calculated, these imperfections may lead to
considerable errors. Again, repeated registration with subsequent averaging
is the best help.

3. CHANGES OF THE GEOMETRY OF THE CAMERA SET-UP

Possible changes of the camera alignment or of the focal position also lead
to errors of the measured scattering function. Therefore, the primary beam
geometry as well as the position of the centre of gravity of the beam must be
controlled periodically. Considerable progress with a view to the stability was
achieved by the construction of the so-called compact camera.

4, INCONSTANT VACUUM

Air contributes increasingly to the entire scattering with increasing angle.
At 5° scattering angle, for example, the air scattering caused by a 20 cm vacuum
tube at 1bar pressure is approximately as strong as the scattering of a usual
glass capillary filled with a dilute macromolecular solution.

As a consequence, measurements are commonly carried out in a vacuum
of only a few millibars. Continuously working pumps are to be preferred
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compared with systems switching off and on when upper and lower levels are
exceeded, since the pressure fluctuations that occur may cause changes of the
camera blank scattering up to 100%, and intensity changes up to 1% even, in
the case of the most powerful scattering samples.

5. SAMPLE TEMPERATURE

The scattered intensity depends on the temperature of the sample. In general,
the dependence is positive and is higher, the higher the thermal expansion
coefficient is. Solids may show an increase in the scattering intensity of 1% and
more per degree Celcius, whereas the scattering of a water fille capillary increases
only c. 0,15% per degree Celcius (depending on the scattering angle).

To avoid errors, the sample container should be thermostatized either by
water or electronically by a Peltier cuvette to +0,1°C (Leopold, 1969).

6. INSTABILITIES OF THE REGISTRATION ELECTRONICS

The sources of possible errors which can be caused by the electronics are
manifold due to the variety of electronical set-ups. For example, shifts of the
operating voltage of the counter tubes, dejustment of the discriminator,
broadening of the pulse height distribution of the counter at the end of its
lifetime etc.

If obvious errors of the scattering curves cannot be explained otherwise, a
thorough check of the electronics will be useful.

7. CHANGES OF THE SAMPLE

Chemical alterations of the sample caused or accelerated by the radiation
or also by other reasons can change the entire scattering pattern. Once again,
a greater number of relatively short scans to be averaged is advantageous, com-
pared with only one or a few extended scans, since changes in the scattering
can easily be detected in time.

A measure for all these possible errors together is the ratio between the
mean deviation of the measured intensities at identical angular positions in
different scans from the mean value compared with the statistical error of
the mean value. In the ideal case of no systematic experimental errors this
value becomes unity, i.e. the measuring points are only afflicted with the
statistical noise.

Practical experience shows that this ratio approaches unity sooner, the more
scans are registered.
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B. Supplementary Measurements
1. PRIMARY BEAM GEOMETRY

For the sake of desmearing, the geometry of the beam cross-section must be
known.

In principle the same registration form should be applied as for the measure-
ment, to keep the errors comparable. In any case, the primary beam must be
attenuated by mass absorption filters before registration. If polychromatic
radiation is used it is essential to switch off the pulse height discrimination
because of the shift of the spectrum towards short wavelengths by the filters.
Otherwise, the counter might be already overcharged although the registered
intensity is apparently low.

The beam dimensions must be measured in the plane of registration or
transformed to it (see Chapter 4).

Position sensitive counters are capable of measuring beam width and length
by adjusting them in the horizontal and perpendicular directions,

In the step scanning mode the intensity distribution across the beam width
QO(x) is measured pointwise using the same receiving slit as for the measurement.
The obtained profile is then already convoluted with the slit width and is
directly used for the desmearing procedure.

The beam length is usually measured by a narrow perpendicular slit which
is moved stepwise across the beam in its P(f) direction. For desmearing, this
profile must be convoluted with the receiving slit length. The symmetry of
P(f) and the shape of Q(x) are important means for controlling the alignment
of the camera.

The zero point of the abscissa can be chosen arbitrarily within the profile
Q(x). The only condition is that all measured intensities including Q(x) are
related to this point. Usually, but not necessarily, the centre of gravity of Q(x)
is chosen.

2. WAVELENGTH DISTRIBUTION

If polychromatic radiation is used, the obtained scattering can be corrected
mathematically provided the spectrum of the X-ray light is known. This can
be measured by an X-ray spectrograph, usually applying a Si- or Ge-crystal.
The different absorption of the crystal for different wavelengths can either
be determined experimentally using an additional spectrograph or in the case
of selected crystals, also by computation (Pinsker, 1978).

Figure 1 shows such a profile for Cu-radiation (45kV), convoluted with
the A-sensitivity distribution of a Xenon-filled proportional counter.

Position sensitive counters are capable of direct wavelength distribution
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FIG. 1. Wavelength distribution of Cu-radiation registered with a xenon-filled proportional
counter in units of A-Cu-K, (intensities are given in arbitrary units). Beside the charac-
teristic K, and Kg lines practically no contributions of shorter wavelength are observed
(since they are not absorbed by the counter gas). The obvious presence of longer wave-
length, however, should be considered for an exact wavelength desmearing procedure.

measurement by analysing not the position pulse spectrum but the energy
spectrum with the multichannel analyser.

A simplified method is to take into account only the predominant contri-
butions of the characteristic K,- and Kg-radiation, neglecting the other wave-
lengths. For this method, introduced by Zipper (1969), the intensity ratio of
K, and K, called v, must be determined.

However, as shown in Fig. 2, the quality of the desmearing method using
the whole spectrum (Glatter, 1977, Miiller and Glatter, 1982) is superior to
the y-method correcting only for the Kg contribution, especially with respect
to the resolution of the minima. For curves without side maxima the y-method
yields quite satisfactory results.

3. PRIMARY INTENSITY

For absolute scale measurements, as necessary for molecular weight, volume
and absolute electron density level determinations, the intensity of the primary
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FIG. 2. Wavelength desmearing of the scattering function of a sphere. The full 'line rep-
resents the theoretical scattering curve. The broken lines were obtained from a simulated
experimental curve derived from the exact function by artificial smearing (beam length,
beam width, wavelength profile) and adding statistical noise and subseguent desmearing,
in the one case (----) applying the y-method, in the other one (=+=-=-~ ) using the wave}engih
distribution w)'. The latter treatment leads to better resolution especially in the region of
the minima.

beam must be known. The methods in use have already been described in
Chapter 3.1. Since the primary beam is weakened by the sample the attenuation
factor of the sample (including eventual cuvettes) must be taken into account.

11. Samples for SAXS
A. Kinds of Samples

SAXS is a versatile method with regard to the variety of materials which can
be investigated, that are densely packed, oriented specimen like fibres of syn-
thetic or natural polymers (cellulose, collagent, silk etc.), amorphous and crys-
talline solids without orientation like glasses, metals, ceramics and polymers,
powders and meltings, suspensions and colloidal solutions.
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Homogeneous solids are exposed to the X-ray beam in the form of foils or
thin platelets, fibres are gathered up into bundles and liquids are poured into
cuvettes.

In any case it is essential that the irradiated region of the sample is quite
homogeneous especially with respect to its density and thickness. In the case
of solids this requirement can easily be fulfilled. Powders and fibres must be
prepared carefully to realize this condition. The single fibres of the bundle
should be parallel without application of strong stretching forces, since the
structure of the material could be changed. Sometimes it is useful to pass the
bundle through a glass capillary to achieve homogeneity.

The material of the cuvettes for liquid measurements must not absorb nor
scatter X-ray too strongly. Cuvettes with plano-parallel walls of thin quartz,
mica or glass platelets have proved to work well, as also the Mark capillaries,
having glass walls of only 0,001 cm thickness. Such a capillary weakens a poly-
chromatic X-ray (Cu-radiation) by the factor 0,7. The capillaries must have
homogeneous wall thickness, uniform diameters and must not have any curva-
ture in the irradiated region (for use in connection with slit collimation systems).
The scattering of a glass capillary is shown in Fig. 3.

A particular problem in measuring liquids is the frequently observed for-
mation of air bubbles within the capillary. This might be prevented by keeping
the sample for several hours at a temperature higher than that employed for
the measurement.

Also short evaporation can help, however solutions can change their concen-
tration. If the bubbles cannot be removed in this way vibrations or shaking
can make them float to the surface. Viscous liquids often cannot be rid of
bubbles, except by refilling or by centrifugation which, however, bears the
considerable risk of destroying the cuvette,

Dust and other slight macroscopical impurities are not disturbing since they
scatter to immeasurable small angles.

For adjustment of the cuvette, it is filled with a strongly absorbing material,
preferably with a saturated solution of CsCl, for example, and adjusted in the
beam by electronical or optical (screen) means to the right position.

B. Sample Thickness and Amount

To achieve maximum scattering intensity the thickness of the sample must
have an optimum value. On the one hand the scattered intensity increases
linearly with the thickness and on the other hand the absorption by the sample
increases, however, exponentially. The optimum thickness, d gy, is

1
dopt = ; (1)
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FIG. 3. Scattering of the evacuated camera (a), of the camera with empty glass capillary
(b), of the camera with a water filled capillary (c) and of the camera with a capillary filled
with a 10% (mass concentration) detergent micellar solution (d). (The intensities corre-
spond to a primary intensity of 2 X 10%c.p.s. measured with Cu-radiation, 1,3kVA,
40 um entrance slit, 100 um receiving slit and a beam length of 1,6 cm in the plane of
registration.)

where u is the linear absorption coefficient. This coefficient can either be cal-
culated approximately from the mass absorption coefficient of the individual
elements of the material, by weighted summation according to the equation

= [ £ (o] >

(p; = mass fraction of ith element, (u/p); = mass absorption coefficient of the
ith element, p = mean density of the entire sample at the measuring tempera-
ture), or by simple measurement of the attenuation of the beam. Preferably, the
latter method will be applied since absorption measurements are done routinely
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FIG. 4. Dependence of the scattering intensity in units of [opy on the sample thickness
given in units of dgp¢. The values of d only correspond to the pure sample thickness. The
thickness of the cuvette walls must be taken into account separately.

anyway for absolute scale determinations. Furthermore, the calculation of p
is complicated if monochromatic light is not used.

In the case of cuvettes or capillaries being used as containers for liquid
samples, the absorption of the empty cuvette must be taken into account for
an accurate measurement. Otherwise, since the walls of the cuvette only contri-
bute to the absorption but not to the scattering of the sample in it, one obtains
too small a value for the optimum thickness, which may lead to a loss of
scattered intensity up to 10% (see Fig. 4).

The precise thickness of the sample as needed for absolute scale measure-
ments can be determined directly by a micrometer for solid probes or by a
calibrated microscope. However, it can also be determined from the measured
attenuation according to Lambert Beer if the absorption coefficient has been
calculated. The problems of this latter method have been already mentioned
above,

Theoretically, the minimum amount of sample is determined by the area
of the irradiated sample and the optimum thickness. For mounting on an appro-
priate sample holder, however, the planar size will have to be somewhat larger
than required by the geometry of the beam passing through it. In the case of
liquid, approximately 0,1cm® is needed. For solutions, the amount of solute
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depends on the concentration which, as a rule, is in the range of 10-0,1% mass
fraction, according to the scattering power (electron density contrast) and
interparticular interference effect. In general, thus, a sample amount of 10mg
will be highly sufficient for one SAXS measurement. If a determination of the
partial specific volume for molecular weight or absolute electron density deter-
mination is desired, much higher quantities are necessary (100-200 mg).

C. Exposure Time

General rules for calculating the exposure time cannot be given. Depending
on primary beam intensity, scattering power of the sample, type of registration
and desired precision of the scattering curve, the measurement of one sample
may take from a few minutes (strong scatterers like solid polymers, fibres
etc.; position sensitive counter) up to several to ten hours (dilute solutions;
step scanning method). Using photographic films, efficient pictures are com-
monly obtained after 1-10 hours of exposure, according to the sensitivity of
the film. In the case of solutions, the expenditure of time is even higher since
it is necessary to have measurements of the blank scattering of the solvent and
concentration series for elimination of the interparticular interference effect.

D. Radiation Damage

A further requirement for the samples is that they must not be changed by the
radiation during the exposure time. A general prediction whether this will
be the case or not cannot be made. Experience, however, shows that the usual
radiation doses only very seldom cause measurable structural changes.

Platelets of Lupolen, for example, as used as calibrated standard samples
showed a decrease in scattered intensity of 1% after absorption of approxi-
mately 10Mrad. This corresponds to ~ 10'° absorbed CuK, pulses, or an
exposure time of several thousand hours (depending on the primary beam
intensity). For enzymes, in some cases an accelerated decrease of the activity
has been observed as an effect of the X-rays. However, these changes in the
activity are not usually accompanied by any measurable change in the scattering
pattern.

Nevertheless, it is advisable to test the stability of the sample by comparisons
of the scattering of repeatedly measured scans.

111. Particle Scattering

Measurements of particles in solution involve some additional experimental
problems and practical aspects that shall be discussed in the following.
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A. Purity of Solution

Solutions must be monodisperse, otherwise the obtained measuring quantities
will represent average values. In special cases this condition does not need to
be fulfilled strictly, e.g. if the molecules of the contamination differ in size
by several orders of magnitude from the main component, so that the angular
ranges of scattering are so different that the mutual influence becomes negligible.
Another example is a system forming an association equilibrium, If the struc-
ture and scattering function of the monomer is known, the structure of the
aggregate can be calculated from the measured scattering curve.

For really polydisperse solutions the information that can be obtained by
SAXS is restricted to the size distribution function, provided the shape of the
particles is known, and vice versa.

To test monodispersity in principle, all methods for separation and analysis
of macromolecules are suitable, however, it is not necessary to apply over-
sensitive methods. In general a preparation showing one single, homogeneously
migrating peak in the ultracentrifuge will be sufficiently pure for a SAXS
measurement.

B. Concentration Effect

The concentration of the solution must be known for absolute scale measure-
ments and for the calculation of the partial specific volume. The latter especially
may be very sensitive to even small errors of the concentration which thus
strongly influences the value of the molecular weight. In general, the effect of
the concentration will be the more influencing the smaller the net electron
density contrast between solute and solvent.

Consequently, the concentration must be determined with the highest poss-
ible accuracy.

For a correct treatment the scattering curve must be extrapolated to zero
concentration in order to eliminate the interparticle interference effect. There-
fore, it is necessary to measure a series of concentrations and to extrapolate
the scattering to infinite dilution. .

Since an exact treatment of the interparticle interference effects is hardly
possible because of the lack of a basic theory (with the exception of hard sphere
interaction models) (Guinier et al., 1955) with limited applicability, several
methods of extrapolation are in use as shown in Fig. 5.

Linear extrapolation of the intensities (Fig. 5a) often works well when the
concentration effect is weak and the concentrations are low.

It is also possible to extrapolate individual parameters like R, 1(0), Q separ-
ately (Fig. 5¢), however, frequently there is also no linear dependence observed
at higher concentrations.
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FIG. 5. Different ways for extrapolation to zero concentration. (a) The smeared scattering
functions are directly extrapolated. The length of the horizontal lines within the triangles
are proportional to the concentration. However, especially at higher concentrations, fre-
quently no linear dependence is found. (b) The radii of gyration are extrapolated. The
extrapolated scattering curve is reconstructed from the course of the corresponding Gauss-
curve. (¢) Zimm-plot. In the 1/ v. h? plot the scattering curves take a nearly linear form
so that extrapolation to zero angle (k - 0) is possible. The extrapolation to zero concen-
tration is done in analogy to (b). (d) In any case the distance distribution function as
obtained by indirect Fourier transformation reflects the concentration effect by the
negative oscillation in the region of D.

Better linearity is often achieved by the Zimm plot (Fig. 5b) developed for
simultaneous extrapolation to zero scattering angle and to zero concentration
in the related field of light scattering.

In any case it is advisable to test the extrapolated curve by Fourier trans-
formation. The obtained distance distribution function should not exhibit a
negative trough in the region of the maximum dimension, as shown in Fig. 5d,
when the interparticular interference effect has really been eliminated.

Depending on the highest concentration three to five dilutions will be suffi-
cient in practice. Since the difference between the individual concentrations
should not be too large (not more than a factor of two), more scans are recom-
mended when starting with highly concentrated solutions. Since the interference
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effect depends on the size, structure, charge etc. of the particle and also on the
solvent, no general rule can be given as to what concentration the dilution
series must be extended downwards. In general, dilutions of 1-0,5% mass
fraction will be sufficient. For measurements up to larger angles where the con-
centration effect disappears, only the highest concentration will be used because
of its scattering power.

Since the interference effect usually becomes negligible beyond values of
h-D>35 (again depending on the actual system), the lower concentrations
need only to be measured up to this angle. Beyond this value the curves should
coincide, provided they have been normalized to unity concentration and to
their individual absorption coefficients. It will be useful to measure up to
somewhat larger angles for a sufficient range of overlapping.

If the curves, nevertheless, do not fit together, errors of the concentration
will be responsible. If they differ in their slope so that overlapping becomes
impossible, changes of the material by dilution must be considered. For very
high concentrations (> 10%) there is another explanation imaginable, i.e.
incorrect computation of the difference between solution and solvent scattering
as a consequence of the non-negligible volume fraction of the solute (see
Section I11.D).

C. Contrast

The contrast Ap strongly influences the scattering power of the dissolved par-
ticles and, moreover, the entire scattering pattern for systems with inhomo-
geneous internal electron density distribution (see Chapter 6). Therefore, it is
essential to choose a solvent providing an appropriate contrast.

For homogeneous particles it will be desirable to adjust the contrast to
as high as possible with respect to the gain of intensity,

For an advanced treatment of the scattering of particles with an internal
structure, measurements at a series of contrasts (positive and negative) must
be carried out. In several cases it will be useful to adjust the solvent to specific
contrasts in order to match the scattering of individual parts of the molecule
with a certain, known electron density. If a detailed analysis of the charac-
teristic scattering functions is not aimed for, it will be sufficient to measure
at one high contrast to obtain determination of the overall shape. If the distance
distribution function shows a smooth course without any fluctuations this
might serve as a criterion for believing that at this contrast the influence of
the internal structure is already negligible.

The actual contrast Ap is

[
I

solute
Ap = py—p, 3

solvent

I
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The individual electron densities p; (in e+ A™®) are obtained from
p; = Zi'ﬁI‘NA'lonzq (4)

where z; is the electron concentration in gram-electrons (= /N, electrons) per
gram substance. For pure components z is simply calculated from the chemical
composition

z =4 (%)

j=number of different elements the compound consists of, nj= number of
atoms of each individual element, N; = number of electrons of asingle atom of
jth element, A; = atomic weight of the jth element.

If several compounds are mixed (buffers, solvents with additives for
contrast adjustment) the former expression is to be weighted by the mol-
fractions (m;) of the i compounds

Zm,-Zn]'NJ-
Zmizn.i' Vi
i I

In aqueous solutions, alcalihalogenides or carbohydrates are usually used for
contrast adjustment. Figure 6 shows the dependence of the electron densities
of aqueous solutions of sodium bromide, glycerol and sucrose on the mole
percentage.

The additive itself should be chosen carefully with respect to minimum
X-ray adsorption, maximum contrast shift at minimum concentration and
the chemical properties of the macromolecular solute, since no changes of the
structure may be caused by the added compound.

For a correct determination of the characteristic functions it is, moreover,
necessary that the excluded volume of the particle is invariant and that no specific
interactions or solvent penetration occurs in dependence of the solvent compo-
sition. In some cases this condition will not be fulfilled exactly, but sufficiently
so that the errors remain below the resolution of the experiment. In the case of
sensible structures, however, like some proteins or aggregation complexes being
in equilibrium with monomers in solution, for example, dramatic structural
changes or even complete disruption of the entire structure may occur. In the
case of polyelectrolytes, for example, it is to be expected that added salts will
more easily interact with the charged surface than, for example, glycerol, which
is known to have a stabilizing effect on several biological structures.

(6)

Zz
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FIG. 6. Dept‘;l:ldenoe of the contrast shifting effect of sucrose (a), sodium bromide (b) and
glycerol (c) in dependence of the concentration of the additive in aqueous solution.
p = electron density of the solution in electrons per A°.

Different electrolytes may behave quite differently (Hey et al., 1976). In
any case the invariance of the structure in different solvents should be tested
as far as possible. A possibility for a partial verification by combining X-ray and
density measurements was described recently (Aggerbeck er al., 1978).

For neutron scattering the problem of contrast adjustment is much less
difficult since a wide range of contrasts can be covered by simple variation of
the H,0/D,0 mixing ratio, however, there arise also problems due to proton:
deuteron exchange reactions between solvent and solute.

D. Computation of the Difference Solution-blank

To obtain a particle scattering curve the difference between the scattering
of the solution and the solvent must be calculated. This is commonly done
by simple subtraction of the scattering of the solvent filled capillary (often
called blank scattering) from that of the solution. Thereby it should be con-
sidered that the total scattering of the solution i(%) is the square of the sum
of the scattering amplitudes generated by all kinds of electron density inhomo-
geneities the beam meets along its path. These are formed essentially by the
entire sample volume including the capillary, by the volume excluded by the
dissolved particles, by electron density fluctuations within the particle and
by the short range electron density inhomogeneities of the solvent. The
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fluctuations within the particle might be separated into those of colloidal
dimensions, thus being resolved by the measured scattering function (usually
called internal structure), and into those unresolved short range fluctuations,
yielding the so-called background scattering, being practically constant at
larger angles.

(For comparison with model scattering functions it is necessary to decide
whether this separation is justified. It is not when models with atomic resol-
ution, for example those derived from crystal structure analysis data, are used,
since then the background is part of the particle scattering. In the unusual
case of models, the structural details of which compare with the resolution that
can be reached experimentally (~ 10-5 A), this dissection will be reasonable.)

ir(h) = (@,(h) + ay(h) + ai(h) + aif(h) + a;(R))’ (M

a (h), ay(h), a;(h), a;h) and a,p(h) are the scattering amplitudes of the entire
sample (s), of the excluded volume of the particles (v), of the internal structure
(resolved) (i), of the internal electron density fluctuations (not resolved —
background) (if) and of the fluctuations within the solvent (sf). The terms
a, and a; together contribute to what we call particle scattering a,.

Since i,(h), the blank scattering, is an analogy

ir(h) = (@, +a5)’ (®)

the difference i,(h) —i,(h) is not identical to the particle scattering because
of the interference terms and the term a;{(h).

Nevertheless, it is possible to obtain the particle scattering as a good approxi-
mation. a, and all corresponding cross-terms are negligible since the size of
the sample is extremely large as compared with the particles. Consequently
a, will be practically zero at the first measuring point, even at highest resolution.

Also, the remaining interference terms will be very small according to the
considerable differences of the dimensions of the individual inhomogeneities,
except the interparticle interference term (J,) which must be considered in
practice, especially at higher concentrations. Consequently, the proper scattering
of the solution #,(/) is in a good approximation:

iy(h) = igp(h) +ip(h) + iy + Jp )
Since by the same approximation i, (h) = i;{(h) the difference curve
ip(h) —iy(h) = ip(h) +i(h) +Jp (10)

(i,(h) = scattering function of the solvent) differs from the true particle curve
only by the term i;/{k), which can be considered as a constant background and
eliminated by subtraction (see below), and by the interparticle interference
term J,, which is eliminated by extrapolation to zero concentration (see
above).
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From the experimental point of view the following considerations should
be kept in mind:

(1) The experimental conditions must be identical during the measurement
of the solution and the blank. Intensity fluctuations of the primary beam,
especially, must be monitored in some way and considered for the difference
calculation. The cuvette must be the same for both measurements. Also, the
measuring temperature should be identical. Although the scattering intensity
of water changes not more than 1-2% per 10°C in the range of room tempera-
ture, this might significantly influence the course of the difference curve at
larger angles, where the solution scattering intensity frequently is less than 10%
higher than the blank scattering. Also, the temperature dependence of the
contrast should be considered.

(2) The composition of the solvent used for the blank measurements must
be identical to that in the actual solution. Deviations originating in Donnan-
equilibrium for solutions of charged macromolecules which have been prepared
by dialysis usually can be neglected.

(3) The counting rates must be chosen with view to the decreasing intensity
difference at larger angles. The relative error F of an individual point of the
difference curve is

_ 1 ¢+l

VN q—1

where N is the number of counts accumulated for both solution and blank

scattering (equal rates assumed for blank and solution), and g is the intensity

ratio i,(h)/i,(h). If this ratio is, say, 10 (at small 2D values), F is about 1%

when 10° pulses have been counted. If g is 1,05 (at large AD values) F becomes

about 30% at the same pulse rate (see Fig. 3). This clearly shows that the pulse

rate must be chosen with respect to the accuracy of the scattering at larger
angles, if any interpretation of this part of the scattering function is intended.

If a constant time is chosen for all points (e.g. position sensitive counter),
this time must allow counting rates for the measuring points at largest angles
which are sufficient for the desired accuracy. The points at smaller angles are
then registered with unnecessary accuracy. In the step scanning mode a constant
preset count is to be preferred.

an

(4) The curves must be normalized to identical absorption. Especially for
higher concentrated solutions, the absorption might differ by 10 and more
percent.

(5) In the case of concentrated solutions, the volume fraction of the solute
must be taken into account: at large hD values the sample scattering curve is
no longer controlled by the form factor of the particle but predominantly by
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the short range fluctuations within the particle. With respect to a correct
elimination of this background, the blank scattering, i.e. the electron density
fluctuations of the solvent, must only be subtracted to such an extent that
corresponds to the volume fraction of the solvent in the solution (Damaschun
et al., 1979). For this aim, an additional measurement of the scattering of
the empty cuvette i (k) (see Fig. 3) is necessary. The correct particle scattering
curve including the background is then obtained from

ip(h) +isp(h) = By(h) — (1 — wa) i1 () — o ic(h) (12)

Also this equation is an approximation assuming additivity of intensities and
neglecting the cross terms. At low volume fractions of the solute (w;) the
effect will be small. At higher concentrations, however, considerable errors
will be observed (negative intensities at larger angles, deviations from the
h3-law).

(6) A further problem of measurements at large angles is that the blank
scattering reflects the liquid structure of the solvent. It is difficult to judge
whether this structure will be changed by the solute and how far the differ-

ence curve will be influenced by this effect at large angles.

E. Background Subtraction

The only remaining contribution to the desired particle curve is the background
scattering. The term i;(h), however, can be determined according to Porod
(1951) and Luzzati (1960) respectively, from the course of the difference curve
at large angles, which should follow the equations

i) = 5+ i) (13)

- P
i) = o+ i) (14)

i;(h) is, in good approximation, taken to be a constant in the measured angular
range. From the slope of an appropriate plot (i(k)*- h* against h*) i;;(k) can be
determined (Fig. 7). (It should be mentioned that Porod’s law only holds for
idealized scattering particles with a smooth surface and step-like electron density
difference to the solvent, however in practice it often can be used in this con-
nection with success.) The intersection with the ordinate represents the Porod-
constant, which allows extrapolation of the curves beyond the measuring range.
This is important for all kinds of evaluations including an integration of the
scattering function from zero to infinity, conventional Fourier transformation
and the determination of the invariant according to Porod.
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FIG. 7. Determination of the scattering background from the F- A v. h® plot of a detergent

Fnicelle scattering curve. From the slope of the straight line, the background (dotted line
in the insert) to be subtracted can be derived.

F. Partial Specific Volume

For any absolute scale measurement, i.e. the measurement of the molecular
weight or the determination of absolute electron density.levels, the partial
specific volume must be known.

This quantity is necessary to define that volume associated with the scattering
particle which deviates in its mean electron density from that of the solvent.
For a simple two component system, i.e. a solution composed of only one
pure solute and a pure solvent, it corresponds to the linear increase in the
volume of the solution when an infinitesimally small amount of solute is added,
and can be described in terms of the density increment (Casassa and Eisenberg,
1964) d

=1 (15)
(p = density of the solution, ¢, = concentration, ¥, = partial specific volume
of the solute, p, = density of the solvent).
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In practice one measures the density difference between the solvent and
solutions of several finite concentrations. The values obtained are called appar-
ent partial specific volumes ¢5

¢ = pi'(1—Ap-c™") (16)

(Ap = density difference between solution of concentration ¢ and the solvent).
The partial specific volume can be derived by extrapolation of these values to
zero concentration.

Possible interactions between solvent and solute are thus eliminated and
the scattering function is extrapolated to zero concentration. Frequently,
however, the concentration dependence of ¢; will be found to be very small,
so that at not very high concentrations ¢, is practically identical to 7, (Pilz
and Czerwenka, 1973).

For multicomponent systems a more complex treatment is necessary. If the
solvent, for example, contains additional compounds of low molecular weight
(salts, buffer substances, additives for contrast adjustment), the interaction
of these molecules with the dissolved macromolecules must be taken into
account (Eisenberg, 1976), by means of preferential interaction terms.

The apparent partial specific volume then can be defined in analogy to
Eqgn (15) as

90 ghepo

de, = 1—¢2°p (17)
however, ¢ is not a specific molar quantity in this case since it includes contri-
butions of mutual interactions of the components.

For a three component system, for example, a more accurate equation is

L = (1=0,0%) + (1 = 50) 1s)
C2

where D, is the partial specific volume of component 3 (salt, sucrose etc.) and
£, is the preferential interaction parameter. 9, is assumed to be a constant.
Since this is a very important question, methods have been developed to test
the invariance of 7, (Aggerbeck et al., 1978). However, it is difficult to distin-
guish reliably the effects of volume change, preferential interaction and solvent
penetration, which possibly may be caused by alterations of the solvent com-
position.

To determine the apparent specific. volume, high precision density measure-
ments are necessary. Usually these are performed with help of the digital den-
sitometer (Kratky et al., 1969). This instrument reaches a high accuracy,
especially when operated with a monitor oscillator (Laggner and Stabinger,
1976) so that even the smallest temperature fluctuations are cancelled out.
Thus in most cases the accuracy of the ¢ values is not limited by the density
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measurement but by the errors of the concentration. Obviously, the measure-
ments must be carried out at the same temperature as the X-ray experiment
and also the solvent composition must be identical for both.

G. Preliminary Evaluations

Several pieces of information can be derived directly from the smeared particle

scattering curve. These might be a valuable help for the subsequent evaluation
procedure.

Provided the condition ,* D < is fulfilled (%, = lowest measured scattering
angle) the smeared curve should follow the Guinier approximation and show
a linear course in the log7 against A2 plot from which the smeared radius of
gyration can be determined. The quadruplicity of this value means a rough esti-
mate of the maximum particle dimension can be achieved.

A steep increase in the intensity at the innermost angles deviating from the
Guinier line indicates the presence of aggregates or other large molecular
arrangements. Deviations from the Guinier line at larger angles to higher inten-
si_ties will be due to anisometric structures, whereas deviations to lower inten-
sities indicate highly isometrical particles,

A curvature of the log//h*line in the Guinier range usually originates in
insufficient monodispersity.

The scattering intensity at zero angle i(0) can be calculated as a good approxi-
mation from the smeared i(0) using the equation (Kratky ez al., 1960)

i0) = (0)- / (““—‘i@) (19)

(tga is the slope of the Guinier straight line).
Also the invariant Q can be determined from the smeared curve.
Q=20 (20)

and

0 —f’ iy h-dh+ | Zonean 21
- hﬁOI ) h, h3 ( )
The constant P can be derived from the analysis of the scattering background
(see Section IIL.E). Thus one obtains information on the molecular weight and
the volume of the dissolved particles from the “crude” data.
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L. Introduction

On the basis of their structure, proteins are usually classified into two categories,
fibrous proteins and globular proteins. The fibrous proteins, such as keratins,
fibroin, myosin and collagen, are normally insoluble in aqueous media. The
globular proteins, on the other hand, are usually soluble in aqueous buffers,
with the exception of the special group of proteins which are integral com-
ponents of membrane structures.

In this chapter we want to discuss only the water-soluble globular proteins,
including such important groups as enzymes, antibodies, hormones etc. In these
proteins the polypeptide chains often form certain regions of regular secondary
structures, like a-helical or pleated sheet structures, but these regions are always
rather limited and the polypeptide chain is folded into a complex tertiary
structure. It is known that many biological functions of the globular proteins
are determined by their three-dimensional structure. The globular proteins may
consist of one single polypeptide chain or of a smaller or larger number of
polypeptide chains, which together form highly complex quaternary structures.
The biological function is very often dependent on the ability of this tertiary
or quaternary structure to respond to the interaction with other molecules by
conformational changes.

Thus, the knowledge of the detailed three-dimensional structure is the key
to the understanding of the biological function. At the present time, X-ray
structure analysis of protein crystals is the only method by which detailed
structural information, at the level of atomic resolution, may be obtained. But
the method also has some limitations and disadvantages, which necessitate the
application of other methods. First, the protein must be crystallized and heavy
atom derivatives have to be prepared. With many proteins it is a serious problem
getting suitable crystals, and hence the conditions (i.e. the solvent, ionic strength,
pH etc.) under which the protein is studied are ultimately determined by the
crystallization procedure and it is usually not possible to care for biological
conditions. Secondly, the protein molecules in the crystal are held together
by forces which are not present under biological conditions in solution.
According to the experience obtained so far, the solvent conditions and the
crystallization seem to have no or only little influence on the structure, but
there are also examples where differences were found between the protein
structure in crystal and in solution (see Section V.B). The great advantage of
SAXS lies in the possibility of performing the measurements in any desired
solvent under biological conditions and in the ability to follow changes of the
structure, which may occur by changing the external conditions.

A third limitation on crystallographic studies is the fact that biological
processes are dynamic, while the X-ray crystallographic studies, which take
several days or weeks, are essentially static. Small angle X-ray studies are usually
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also static, but by using high power X-ray sources and position sensitive
detectors it becomes possible to follow dynamic processes which are not too
fast (see Section VIIL.B).

In the following we want to discuss the kind of information that can be
obtained on the secondary, tertiary and quaternary structure of the so-called
“globular proteins” by small angle X-ray scattering. (“Globular” does not mean
that all of these proteins are nearly spherical; there are also elongated or flat
molecules — but as compared to the very elongated fibrous proteins it is justi-
fiable to call them “globular”.) We will deal mainly with the water soluble
proteins and in the first part of this chapter the usual experimental procedures
and the basic evaluations will be described. In the second part some newer
applications will be discussed. Unfortunately there are at the moment no pub-
lished applications available for some new interpretation procedures described
in Chapter 5.

I1. Preparatory Steps
A. Preparation of Protein Solutions

Usually several questions, which are of interest to biochemists who intend to
perform a small angle X-ray experiment on a protein, concern practical details
like: total amount of protein necessary; special requirements of solvent (buffer);
optimal concentration of the protein; radiation damage. Since the sample
preparation has been already discussed in a general way in Chapter 7 we will
only deal with some supplements concerning protein solutions.

1. TOTAL AMOUNT OF SAMPLE

As a general rule, a total amount of about 20 mg protein is the lower limit.
Exact measurements, which involve frequent repetitions, require a total amount
of 100-200 mg. 5-10 mg, however, may be enough for a preliminary investi-
gation yielding rough overall parameters for the molecule.

2. CHOICE OF SOLVENTS

Proteins are usually dissolved in buffers or salt solutions of low concentra-
tion. The only requirement of the SAXS method concerns the electron density.
As already pointed out in Chapters 2, 4 and 7, the scattered intensity is a func-
tion of the electron density difference between solute and solvent. Since the
electron density difference between protein and water is in itself not very high,
salt concentrations of more than 1 M should be avoided and light ions should be
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preferred to heavy ions. The solvent scattering at high salt concentrations
(especially of heavy ions as, for example, CsCl) can easily mask the scattering
of the protein.

In any case, a complete series of concentrations of the protein must be
measured, as already mentioned in Chapter 7. One usually prepares a stock
solution and dialyses against the desired buffer. An important rule shall be
stressed again: the solvent used as blank solution (for the determination of
the background scattering) must be identical in composition and chemical
potential to the solvent used for the protein. This requirement is usually best
fulfilled by dialysation. Special procedures may be necessary whenever dialysa-
tion is unsuitable (such as in the presence of large amounts of sucrose, which is
occasionally used to vary the electron density — Schausberger and Pilz, 1977).

3. CONCENTRATION OF PROTEIN SOLUTIONS

For globular proteins, concentration effects can usually only be neglected
for concentrations below 1 mgml™. Proteins in aqueous solutions, however,
produce such a small excess scattering (see Chapters 2 and 7) that statistical
errors become inhibitively large for concentrations below about 3 mgmi™.
This makes it necessary to study a concentration series and to extrapolate it
to infinite dilution. As a rule four or five solutions with concentrations in the
range between 3 mg mI™! and 30 mg mI™! should be measured. As concentration
effects are apparent only at relatively small angles, much higher concentrations
(50-100 mg mI™") can be used for investigating the tail end of the scattering
curve where the intensity is very weak. These highly concentrated solutions
make it possible to measure details of the scattering curve (maxima, minima)
at large angles with sufficient accuracy.

4. HOMOGENEITY

To derive exact data from SAXS, all macromolecular particles in the system
must be identical in size and shape. Only in truly monodisperse solutions is it
possible to obtain exact structural parameters. Since proteins often tend to form
aggregates, it is always necessary to test the protein solution using other physical
techniques before investigating SAXS. A minimal criterion is that the solute
shows a single symmetrical peak in the sedimentation pattern in the analytical
ultracentrifuge (compare also Chapter 7).

If there are aggregates, one must try to remove them by such methods as gel
filtration, electrophoresis, electrofocusing or centrifugation. These methods,
of course, fail if there is an association-dissociation equilibrium; however, in such
cases it is sometimes possible to obtain essential information on the protein as
shown in Section IV.B4.
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Sometimes the formation of aggregates can be prevented by changing the
temperature, buffer, ionic strength etc. or by adding some reagents. But in any
case one has to prove carefully whether or not these conditions change the
native conformation of the protein.

5. RADIATION DAMAGE

A question which occurs in the course of every small angle investigation
concerns the possible damage to the protein due to the absorbed X-rays. SAXS
only records the morphology of the biological macromolecule, independent of
its functional activity. That is, a loss in activity can be detected by SAXS only
if it is accompanied by a significant change in morphology. Very small structural
changes, which affect only part of a chain or dislocate a few atoms, are invisible
for SAXS as long as the measurement is restricted to the usual small angle
region; (the possibility of getting information on smaller structural changes is
discussed in Section V). In other words, a damage to the molecule due to radi-
ation or other factors does not influence the small angle curve as long as there
is no structural change in the order of magnitude mentioned above.

As an approximate rule, proteins do not suffer much damage if the duration
of X-ray exposure does not exceed about 10 hours (with the usual X-ray gener-
ators operated with 50kV and 30 mA). According to our experience many
samples do not lose any more activity after that period of irradiation than a
non-rradiated reference sample. On the other hand, there are a number of
proteins which are much more sensitive to irradiation. Some of them dissociate
and others, for instance some IgG antibodies and enzymes, aggregate under the
influence of X-ray radiation. In such cases one has to look for conditions which
prevent the dissociation or aggregation as far as possible, or to change the
solution as soon as an aggregation or dissociation starts. Another possibility (if
enough sample is available) is to measure in a cuvette through which the solution
is pumped from a reservoir. Sometimes the use of very low intensity X-rays, or a
completely monochromatic radiation (using a graphite crystal, see Chapter 3),
prevents the aggregation.

Morphological changes which may occur during irradiation can be monitored
by the change of the scattered intensity as a function of time. Repeated
recording of the same curve can easily detect and help to eliminate such affects
(see Chapter 7).

I11. General Data Evaluation

We assume that the following preparatory steps, which are described in detail
in the preceding chapters of this book, are already done: measurement of a
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concentration series of a monodisperse solution of a protein, subtraction of the
blank scattering, normalization of the scattering curve to unit concentration
(I(h)/c-curves), desmearing (correction of collimation and wavelength effects),
and Fourier transformation. Thus we have the final scattering curves of the
various concentrated solutions in the reciprocal space and their most useful
presentations in the real space — the p(r) functions. The general data evaluation,
which is always the first step with all the various types of evaluation, shall be
illustrated in some detail by a practical example in order to explain the way in
which molecular parameters can be obtained.

A. Elimination of Concentration Effects

It should again be bome in mind that all of the equations discussed in Chapters
4 and 5 are valid only for sufficiently dilute solutions. A solution is only suffic-
iently dilute if the distances between the macromolecules in solution are so
irregular and so large that no phase relations (interparticle interferences) exist
between the waves scattered by the single molecules. On the other hand the
scattered intensity becomes too weak and the statistical errors too high by using
protein concentrations below about 3 mg mI™. Thus we have to measure, in
any case, a concentration series and to extrapolate to zero concentration.

Interparticle interference usually leads to a decrease of the scattered inten-
sity with increasing concentration at small angles as shown in Fig. 1 for different
concentrations of haemocyanin Astacus leptodactylus, which is chosen as an
example in this chapter (Pilz etral, 1980). Since the distances between the
macromolecules in solution are large as compared to the distances within the
macromolecules, the concentration effects due to interparticle interference only
occur at small angles, according to the law of reciprocity. At larger angles the
scattering I(h)/c-curves of all concentrations should coincide (Fig. 1).

The magnitude of the concentration effect depends on the shape and charge
of the particle and the solvent (see also Chapter 7). No general function exists
which would allow prediction of the magnitude of the concentration effect.
Good approximations have been given by Guinier and Fournet (1955) and Porod
(1972). In the practical case the magnitude of concentration effects can be seen
best by plotting the scattering curves of the various concentrated solutions,
normalized to unit concentration, in the way shown in Fig. 1. This plot also
shows whether it is necessary to measure any further concentrations,

The different ways normally used for the extrapolation to zero concentration
are shown in Figs 2 and 3. The upper (and lower, respectively) thick line is the
extrapolated curve; the extrapolation can be carried out either in the normal
plot (f(h)fc-values against h, Fig. 2) or in the Zimm plot (known from light
scattering, Fig. 3). Within that small angular range at which the scattering curves
of the higher concentrated solutions deviate clearly from those of the lower
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FIG. 1. Slit-smeared scattering curves of a protein (haemocyanin of Astacus leptodactylus)
for the indicated concentrations ¢. The curves are normalized to ¢ =1 by plotting I/c;
h =4nsin 6/ and A the wavelength of the CuK-line = 0,154 nm (the same holds for all
figures given in this chapter); 26 = scattering angle; J slit-smeared scattering intensity.

ones, the concentrations are plotted in arbitrary units parallel to the abscissa at
each measured scattering angle as shown in Figs 2 and 3 (Cleemann and Kratky,
1960). Scattering curves of solutions with relatively low protein concentrations
can be extrapolated usually in either of the two plots (normal and Zimm) to
zero concentration. If one is forced to use highly concentrated solutions the
more precise extrapolation in the Zimm plot should be preferred.

A third possibly way is to calculate the radius of gyration R from the Guinier
plot for each concentration (Fig. 4) and to plot the R-values against the concen-
tration ¢ as shown in Fig. 5. Obviously, this extrapolation is only meaningful
when the Guinier plot of the curves follows a well defined straight line, as
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FIG. 2. Innermost portions of the scattering curves shown in Fig. 1. The curves are extra-
polated to zero concentration (curve 1) by plotting the corresponding concentration at
different scattering angles parallel to the abscissa in arbitrary units, as indicated.

illustrated in Fig. 4. All extrapolations to zero concentration can be done with
the smeared (as in Figs 2-5) or unsmeared curves. We routinely perform all three
extrapolation procedures on the smeared and unsmeared curves of the same
system. An agreement of the extrapolated curves is a good indication that no
serious error was introduced by the extrapolation procedure.

Another valuable hint for the correctness of the extrapolation to zero con-
centration uses the p(r) functions (see Chapter 5). This function is affected
considerably by interparticle interferences. It is lowered with increasing distance
r and goes through a minimum in the region of the maximum distance D of the
particle, as already pointed out by Damaschun et al (1973). In Fig. 6 the distance
distribution functions for haemocyanin in various concentrations are shown. It is
clearly seen that the minimum is most pronounced for the highest concentration
and that it disappears for the curve extrapolated to zero concentration. The
p(r) function ends with a negative part only for particles having regions with
different electron density of different signs at the distal ends. Since such a
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FIG. 3. Innermost portions of the scattering curves shown in Fig. 1 in a Zimm-plot. The
curves are extrapolated to zero concentration in the same way as described in Fig. 2.

configuration can be excluded for proteins, concentration effects can easily be
recognized from the p(r) functions.

B. Molecular Parameters
1. RADIUS OF GYRATION

The radius of gyration R of a dissolved particle is one of the most important
and most precise parameters obtained by SAXS and it can be determined in
several different ways.

The most common method uses the Guinier approximation described in
detail in Chapters 2 and 4. Figure 4 shows the Guinier straight lines of haemo-
cyanin Astacus leptodactylus in various concentrations. From-the slopes of the
straight lines the radii of gyration can be calculated. It should again be pointed
out that the smallest angle measured has to be & <n/D (see Chapter 4). Extra-
polation to zero concentration (compare Figs 2, 3 and 5) yields R = 6,56 nm
(smeared value) (final desmeared value: R = 6,90 nm).
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FIG. 4. Guinier plots of the innermost portions of the scattering curves shown in Fig. 1. The
values of the slit-smeared radii of gyration R obtained for the different concentrations are
indicated.

The radius of gyration can also be determined from the distance distribution
function (p(r)). This method is particularly powerful when used in connection
with the indirect Fourier transformation described in Chapter 4. It has the advan-
tage that the whole scattering curve is used for the determination of the radius
of gyration and not only the innermost portion as is the case with the Guinier
method. Using this method we found for haemocyanin that R = 6,92 nm.

A third way to estimate the radius of gyration is only possible for homo-
geneous and isometric particles, whose shape does not deviate strongly from a
sphere or cube as is sometimes the case with globular proteins. The scattering
curve of these particles usually shows well pronounced maxima and minima
and R can be calculated from the position h, of the first subsidiary maximum
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FIG. 5. Slit-smeared radii of gyration R calculated from Fig. 4 plotted against the protein
concentration ¢.
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FIG. 6. Distance distribution functions p(r) for various concentrated solutions of the
haemocyanin of Astacus leptodactylus. Curve (——-), c =48 mgg™'; curve (-——- -),
c=216mgg™"; curve (——-), c =48 mgg™', curve (—), ¢ extrapolated to zero; D =
maximum distance of the particle. :
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2. MOLECULAR WEIGHT

The molecular weight M, is calculated using Eqn (42) (Chapter 4). Especially
with proteins, it is necessary to determine the isopotential specific volume
v as accurately as possible (see Chapter 7) because it enters the equation in
the square of a relatively small difference thus leading to a strong amplification
of errors. (Errors of 1% in the vy value, for instance, produce errors of 4-5%
in the value of M, when proteins are investigated in the usual dilute buffers.)
(Zy, the number of moles of electrons per gram of the solute (protein), generally
has the value 0,535 for proteins.)

The intensity at zero angle I(0) is usually obtained by extrapolation to zero
concentration shown in Figs 2 and 3 and the intensity of the primary beam is
measured using one of the methods described in Chapter 3, Section I. For haemo-
cyanin Astacus leptodactylus M, was found to be 854 000 £ 5%.

3. VOLUME

The volume V of the protein particle is determined by Eqn (62), Chapter 4;
I(0), the intensity at zero angle and the invariant Q enter the equation. Q is
given by the integral

0= j: I(h)-h*dh = j: I(h)-h’dh+gl,, )

Obviously, it is not possible to record the scattered intensity up to the angle oo.
The integration is therefore carried out numerically with Simpson’s formula
up to a relatively large angle #*; the remaining tail end of the curve is integrated
analytically: according to Porod (1951), the tail end of a scattering curve oscil-
lates about k4™ . The tail end constant k; is determined from a suitable plot
(I(h) v. k™), which should oscillate about a straight line with slope k;. This
determination, however, is never very accurate, and the analytically computed
portion of the invariant (i.e. the term k,/h*, see Eqn (2)) should be as small as
possible. Usually, its contribution to the total of Q is less than 10%. Figure 7
shows the plot I(h)+h?v. h. The invariant is equal to the area under this curve.
Analytical integration started at the angle 2*. The value thus obtained for the
volume of haemocyanin is 1,07 x 10* nm>.

It may be necessary to point out that Eqn (2) is exactly valid only for particles
with homogeneous electron density and the volume can be determined therefore
with much less accuracy than, for instance, the radius of gyration.

A method for approximate calculations of the volume of compact homo-
geneous particles by use of a finite portion of the scattering curve has been
suggested by Kayushina et al (1974).
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FIG. 7. Plot of I(h) X h* v. h used for the calculation of the invariant Q of haemocyanin of
Astacus leptodactylus. From zero angle up to (26)* (resp. #*) the integration is carried out
by Simpson’s formula.

4. DEGREE OF HYDRATION

Water molecules are essential structural features in proteins, both in the
crystal and in solution; the volume of the dissolved protein determined by
SAXS is always a “hydrated volume™ including a smaller or larger number of
water molecules, which are loosely bound between the folded polypeptide
chains and subunits forming the complete structure. It is of some interest to
know this degree of hydration (or degree of swelling) f;. It can be calculated
from the hydrated particle volume ¥V, the molecular weight M, and the iso-
potential specific volume v5

NV

= L 3
v, M, 104 ®)

s

From this the number of grams of water per gram of protein can be calculated
grams H,O/grams protein = v5(f,— 1).

For haemocyanin Astacus leptodactylus f, was found to be 1,37 which corre-
sponds to about 0,3 g H,0 per gram of protein.
The commonly used expressions ““degree of swelling” or “degree of hydration”
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are sometimes misleading. The idea of these expressions is not that a protein is
swollen in water like a sponge, but that the relatively low resolution obtained
by SAXS does not allow determination of only the protein volume. Water
molecules in small curves and clefts in between the polypeptide chains belong
to the volume determined by SAXS and are the reasons for the difference between
the volume of the pure protein mass and that determined by SAXS. Therefore
the expression “degree of hydration” is to be preferred to the misleading ex-
pression “degree of swelling”.

5. MAXIMUM DIAMETER

It follows immediately from its definition that the distance distribution
function p(r) is zero for all distances larger than the maximum particle diameter.
Figure 6 shows the maximum distance D of haemocyanin Astacus leptodactylus
to be 21,5 nm.

6. OTHER STRUCTURAL PARAMETERS

The SAXS parameters discussed so far (radius of gyration, molecular weight,
volume and maximum diameter) are the ones most commonly used to charac-
terize dissolved particles. There are a number of other structural parameters
applicable to the description of a general colloid-type distribution of matter.

One of these parameters is the specific inner surface Oy (see Chapters 2 and
4), which is identical with S/V, whereby S corresponds to the inner surface of
the dissolved particle and ¥ is the volume of the particle.

The transversal or intersection length T is defined as the average of all inter-
cepts obtained by intersecting the disperse phase in all possible directions. It is
proportional to the inverse of the specific inner surface; for a system of identical

particles
4V

I= 5 @)

4
Os
C. Shape

The object of the interpretation of SAXS of proteins is to get detailed know-
ledge of their structure, which may contribute to the understanding of their
biological function. In general, a structure analysis from SAXS data cannot
start from an atomic model as the experiment does not allow such a resolution.

The structural parameters of the macromolecule mentioned so far can be
calculated directly from the scattering curve or its Fourier transform; they are
independent of the model. Information on the shape of a protein is usually
obtained by a trial and error procedure. The basic strategy is-to look for models
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which have the same structural parameters and to compare the experimental
curves with the curves calculated for various models. This process can be carried
out in reciprocal space (with the scattering curve), and in real space (with the
distance distribution function). All models not equivalent in scattering can be
rejected, models whose scattering curve coincides (within the experimental
error) with the observed curve are accepted and presented for discussion (see
Chapter 4).

It should be pointed out that the coincidence of experimental and calculated
scattering curves only proves that the model is equivalent in scattering. To prove
that a detailed model is the only right one is not possible. Furthermore, it should
be mentioned that the analysis of small angle X-ray scattering as discussed in this
chapter in terms of shape models is only meaningful for chemically homogeneous
structures, like proteins, which have only small density fluctuations within the
molecule. In this case the scattering is mainly determined by the shape of the
particle and the contribution of the internal structure becomes negligibly small
at low resolution,

The overall shape — whether the molecule is spherical, flat, elongated, con-
tains hollow spaces etc. — can be suggested if the scattered intensity is known
to high precision. In summary we can say that SAXS provides valuable infor-
mation concerning tertiary and quaternary structure of proteins and there are
also first attempts to apply SAXS to problems concerning the secondary struc-
ture of proteins. The possibilities of obtaining this information is discussed with
practical examples in more detail in Section V. In the following, we will confine
ourselves to the basic procedure in which an overall shape can be determined.

The first idea of the overall shape of a macromolecule is obtained from a
comparison of its scattering curve with theoretical curves of simple triaxial full
and hollow bodies with various geometries and various axial and hollow-space
ratios. It is most convenient to use double-logarithmic plots for this purpose,
since a comparison in this plot depends only on the shape of the molecule and
is independent of the size of the particle and the scattered intensity. An example
is shown in Fig. 8 for haemocyanin, whose experimental curve is compared with
those of a sphere and ellipsoids of various axial ratios.

Deviations between the observed and theoretical curves of simple triaxial
bodies may be explained by consideration of a more complicated model. For
proteins, such deviations from the theoretical curve of a homogeneous, triaxial
body can usually be explained by deviations from a simple triaxial shape or in
terms of a well defined substructure, e.g. originating from the arrangement of
subunits. In other words, this substructure causes deviations from the assump-
tion of homogeneous electron density implicit in the simple triaxial models.

Since there is a very great variety of possible substructures, one should use
any accessible information for the construction of a detailed model. Sometimes
it is possible to split a protein into fragments, dissociation products or smaller



254 I.PILZ

— log /(4]

— log #

FIG. 8. Comparison of the experimental curve of the haemocyanin of Astacus leptodactylus
with theoretical curves of a sphere (1:1:1), various ellipsoids of revolution of the given
axial ratios and the Model 4 in a log-log plot. C is the model of the monomer.

subunits without changing their conformation. The knowledge of the structural
parameters and the overall shape of these fragments or subunits can be a valu-
able help in finding a model for the whole protein, as shown in Section V.C4.
Further information obtained from biochemical studies, such as number and
size of polypeptide chains, may give valuable hints to the number and size of
subunits. Electron microscopy may yield useful information concerning their
arrangement. Finally, from the SAXS curve itself, information on subunits can
be obtained as discussed in Section V.C3.
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FIG. 9. Distance distribution function p(r) of the haemocyanin of Astacus leptodactylus
(000) compared with the calculated p(r)-function of (a) model B and (b) of model 4.

Now let us go back to our practical example of haemocyanin Astacus lepto-
dactylus. From the comparison with simple triaxial bodies in Fig. 8 we get the
information that its overall shape is somewhat elongated with a main axial ratio
of about 1:1:2 and that it can be described to a first approximation by a simple
ellipsoid or cylinder of homogeneous electron density.

The information from biochemical studies was a valuable help in discovering
that this protein is a dimer which can be split into two monomers, each con-
sisting of six nearly identical subunits. The investigation of the monomers allowed
the presentation of model C (Fig. 8) for the monomers, which is equivalent in
scattering. '

The next question was to find out in which way these monomers were
arranged to form the dimer. A larger number of models were calculated arranging
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the monomers in symmetrical and asymmetrical ways and assuming that they
were connected either very loosely by touching only at one point or by over-
lapping of larger areas.

Distinguishing between these models is possible, for instance, by the com-
parison of the distance distribution functions. Model 4 in Fig. 9b, for instance,
fits well the experimental p(r) functions and the scattering curve in the recipro-
cal space (Fig. 8), while Model B in Fig. 9a shows clear deviations. Model B has
a low electron density in between the monomers which causes a decrease in the
distances in the range of 12 nm and, of course, an increase of the larger distances
in the range of 16 nm, clearly seen by the minimum and the shoulder in the
model curve.

1V. Special Data Evaluation
A. Spherical Proteins

For particles with spherical symmetry it is possible to determine, besides other
structural parameters, the radial electron density distribution from the Fourier
transform of the scattering amplitudes, and from p(r) functions obtained by the
indirect Fourier transformation (see Chapter 4). Lipoproteins and the spherical
viruses (resp. their protein shells) especially show a highly spherical symmetry.
Since these groups of proteins and the determination of the radial electron
density distribution are discussed in detail in Chapters 9 and 10, we want to
cite only a few papers dealing with spherical proteins. Fischbach and Anderegg
(1965) and Bieling et al. (1966) determined the radial electron density distri-
bution of apoferritin, Anderegg (1967) and Zipper et al (1971) those of different
viruses and their protein shells.

B. Elongated Proteins

Although most of the water-soluble proteins have a globular shape, some are
known to be elongated either in the monomeric form or in the form of rod-like
aggregates.

1. CROSS-SECTIONAL FACTOR

As already discussed in Chapter 2, the scattering curve of a particle, one
dimension of which is very large in comparison to its other dimensions, can be
split into two factors, one factor which is related to the length of the rod-like
particles and depends upon 1/h and the cross-sectional factor I,(k). Multiplying
the scattering curve by h, the factor of the length can be eliminated and the
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FIG. 10. Theoretical cross-section curves of ellipsoids with an axial ratio 1:1:¢ shown in
Guinier plot (Mittelbach, 1964).

curve then obtained represents only the cross-sectional factor I(h), i.e. I(h)*h.
From the cross-sectional factor a number of parameters concerning the cross-
section can be calculated; the radius of gyration of the crosssection R,
molecular weight per unit length M, and the area 4, of the cross-section. A
comparison of the cross-sectional factor with theoretical curves of various cross-
sections give information on the shape of the cross-section. Isotropic cross-
sections show the steepest curves, while increasing anisotropy leads to a flattening
of the cross-section curves.

There are not many proteins which are extremely long in comparison with
their cross-sections, and thus correspond to the requirements stated above. In
practice it is therefore of more general interest to see whether it is also possible
to obtain information on the cross-sections of particles with a length which is
only a few times larger than the other dimensions.

In Fig. 10 the cross-section curves (Mittelbach, 1964) of ellipsoids with the
axial ratio 1:1:¢ are shown in the Guinier plot. These curves lead to two con-
clusions:

(1) The cross-section curves of particles the lengths of which are only several
times their diameters differ from the cross-section curves of very long particles
(dashed line) by their low intensities at very small angles. This low intensity
becomes the more pronounced, that is, the curve deviates already from the
Guinier straight line at correspondingly larger angles, the smaller the length the
particle is in comparison to its diameter.
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This low intensity at small angles is readily understood since particles which
are not very long naturally lack large intraparticular distances and thus also the
corresponding scattering at small angles.

(2) It is seen from Fig. 10, that the Guinier linearity of the cross-section
factor is already apparent at a ratio of diameter to length of about 1:2. One
can thus obtain rough information about the cross-section of a protein molecule
which is only about twicz as long as its diameter. Exact data on the cross-section,
however, can be usually obtained only when the ratio diameter to length is
clearly larger than 1:2. The evaluation is done by correcting the low-angle region
of the cross-section factor, in the manner illustrated in Fig. 10, that is, by
extrapolating the scattering curves to zero angle (dashed lines).

From these corrected cross-section curves for particles, which are not very
elongated, all parameters of the cross-section (R, M., 4, anisotropy) discussed
above for very long particles, can be determined. Furthermore, the cross-section
can be calculated not only for rigid rods, but also for slightly bent rods.

2. CROSS-SECTION FROM THE p(r)-FUNCTION

An elongated particle can also be recognized directly from the form of the
distance distribution function. Particles with a constant cross-section (long
cylinders or prisms) show a characteristic linear decrease at large r-values, as
pointed out in Chapter 5 (compare Fig. 3). A necessary condition for recog-
nizing a cross-section is again that the maximum dimension of the cross-section
Cmax is much smaller than the maximum dimension D of the whole particle

L 25 )]

Cmax
From the slope of the linear region at large r-values the area A, of the cross-
section can be calculated. Since the method for obtaining information about
the cross-section also from the p(r) function, has only recently been developed
(Glatter, 1979), no published practical examples are so far available. The calcu-
lation of the distance distribution function p.(r) and radial inhomogeneity is
described in Chapter 5.

3. LENGTH OF THE PARTICLES

When the length of a protein particle does not exceed 100 nm, it is possible
to determine not only the radius of gyration of the cross-section R, but also the
radius of gyration R of the whole particle, provided that in very long particles
sufficiently small angles are measured. When R and R are known, the length L
of the particle can be directly calculated from
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for an ellipsoid, where ¢ is the largest semi-axis.
4. PRACTICAL EXAMPLE

Beef liver glutamate dehydrogenase may serve as an example, since this
enzyme forms elongated aggregates. The enzyme was studied by Sund et al
(1969) in a concentration range of 1 mgml™ to 33 mgml™; in this range of
concentration the glutamate dehydrogenase exists as a mixture of aggregates,
the average molecular weight of which increases from about 0,5 x 106 to
2 x 10® with increasing concentration.

But while the radius of gyration R and the molecular-weight M, of the
whole particle varies greatly in the concentration range under investigation,
the cross-section curves show almost identical slopes in the Guiner plot (Fig. 11).
The radii of gyration of the cross-section R, calculated from the slopes of the
straight lines, and the masses per unit length M,, calculated from the intensities
at. zero angle, are also identical as seen in the plot of the R, and M, values
versus the enzyme concentration ¢ (Fig. 12). It can be clearly seen that both
the radii of gyration and the masses per unit length of the cross-section are
independent of the concentration and thus independent of the size of the
associated molecules. This proves that with this enzyme a linear aggregation
takes place in the direction of the long axis while the cross-section remains
unchanged.

By comparing the shape of the experimental cross-section curves with theo-
retical curves for elliptical cross-sections of varying axial ratios, it is also possible
to obtain information on the shape of the cross-section. Figure 13 shows this
comparison for solutions of various concentrations and it is seen that regardless
of the concentration, there is always a largely isotropic cross-section which is
either circular or slightly elliptical.

The data which can be obtained on the size and shape of the whole molecule
are, because of the mixture of aggregates, much less accurate; nevertheless, it
can be shown from these data, too, that a linear association must take place.
From the radii of gyration R obtained for the whole particles and the known
R, value, the average length L of the aggregates can be calculated. If these
lengths are plotted against the average molecular weights (Fig. 14) it can be
seen that there is a linear association; that is, the lengths increase in proportion
to the molecular weights of the aggregates. Generally we can say that in any
case where data on the crosssection of a particle can be calculated, a more
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FIG. 11. Guinier plot of the cross-section factors of glutamate dehydrogenase recorded for
cleven different concentrations in the range between 1 mgml™' and 33 mg ml~'. The result-
ing values for the radius of gyration of the cross-section R, and the mass per unit length M,
are plotted against the concentration in Fig. 12 (Sund et al., 1969).

detailed picture of its shape is obtained. With very long particles (several thou-
sand angstroms), the length of which cannot be determined by SAXS, at least
information on the shape and mass per unit length of the cross-section can be
obtained. With associating proteins the type of association may be determined
as shown with glutamate dehydrogenase.

5. RADIAL ELECTRON DENSITY DISTRIBUTION

As already discussed in Chapter 4 it is possible to calculate the radial electron
density distribution of a circular cross-section of very elongated particles using
the Hankel transform (Fedorov and Aleshin, 1966; Fedorov, 1970).

Fedorov etal (1977) studied microtubule structures by this method.
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FIG. 12. Radius of gyration of the cross-section R, and mass per unit length M, of gluta-
mate dehydrogenase as a function of the concentration ¢ (Sund et al., 1969).

Microtubules in solution form hollow cylinders, the length of which consider-
ably exceeds their diameter. Figure 15 shows the obtained electron density
distribution of the microtubule cross-section (electron density p(r) plotted
against the radial distance r). The distribution function shows the presence of an
internal cavity (or very low density region) with a diameter of about 140 A. The
external diameter of the cylinder is about 290 A and the wall thickness about
75 A. Similar studies have been performed on tobacco mosaic virus (Fedorov,
1971) and on flagella from Salmonella (Yamaguchi et al., 1974).

C. Lamellar Proteins

1. THICKNESS-FACTOR

By a lamella we understand a particle in which two dimensions are large
compared with the third dimension (the thickness T'). As already discussed in
Chapter 2 the scattering curve of a lamellar particle is composed of a factor of
the area, which is proportional to 472, and a thickness factor of the Gaussian type.
By multiplying the scattering curve by h? the factor of the area can be elimin-
ated and the remaining thickness factor can be plotted according to Guinier.
From the slope of the straight line thus obtained, the radius of gyration R, of
the thickness is calculated, which when multiplied by 1/12 gives the thickness T"
itself, provided that the flat particle has a homogeneous electron density. ~
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FIG. 13. Comparison of the experimental cross-section curve (o) with theoretical curves
(full lines) for elliptical cross sections with axial ratios (22:2b) between 1:1 and 1:0,4 (in
log-log plot). ¢ is the concentration of glutamate dehydrogenase (Sund et al., 1969).

Though these relations are calculated for particles the thickness of which is
very small as compared to the dimensions of the plane of the lamella, the thick-
ness of lamellar particles can still be determined even if the length and the width
of the particle are only about twice or three times larger than the smallest
dimension (the thickness). In analogy to the cross-section curves of not very
elongated rods, a lack of intensity at small angles is also observed in this case for
the same reasons.
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FIG. 14. Average ‘length L of glutamate dehydrogenase particles in phosphate buffer,
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FIG. 15. Function of electron density distribution p(*) of the microtubule cross-section.
( )} Function corresponding to the alternating order of signs (+—+—) of the scattering
amplitude; (———) function corresponding to a less reliable variant of sign alteration
(+ —+ +) of the scattering amplitude; (--—-— ) cylinder with the internal diameter of 140 A
and 290 A, respectively; r = radius of the circular cross-section (Federov et al., 1977).
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