

Viktor Kaufmann Institute of Geodesy Graz University of Technology Steyrergasse 30 A-8010 Graz, Austria

E-mail: viktor.kaufmann@tugraz.at http://www.geoimaging.tugraz.at/viktor.kaufmann/

V. Kaufmann, 10.8.2008

Panorama: Obergurgl, Rotmoos valley, Äußeres Hochebenkar cirque, Gurgler Ferner

10th ICA Mountain Cartography Workshop

Viktor Kaufmann

Contents

- 1. Introduction
- 2. Study area
- 3. Previous work
- 4. Data acquisition
- 5. Methods
- 6. Results
- 7. Discussion

- Climate change has significant influence on the Earth's cryosphere.
- Atmospheric warming during the last 150 years has caused strong glacier recession and also permafrost degradation.
- Mountain/alpine permafrost
- Ötztal Alps, Austria
- Äußeres Hochebenkar cirque (rock glacier)
 - Austria's prime rock glacier
 - It is well-known for its long record of continuous photogrammetric and geodetic measurements.
- Inneres Hochebenkar cirque (rock glacier & glacier)
 - > Haeberli and Patzelt (1982), Krainer et al. (2015)
- The main focus of the present paper is to document the past and the more recent surface change of the periglacial (= non-glaciated) environment of the Inneres Hochebenkar cirque.

Inneres Hochebenkar cirque

Viktor Kaufmann

ΓU

Graz

4/28

Inneres Hochebenkar rock glacier Inneres Hochebenkar cirque

Viktor Kaufmann

Virtual overflight

Source: Kaufmann & Plösch (1999, 2001) http://www.geoimaging.tugraz.at/viktor.kaufmann/animations.html

Aerial photograph © BEV, Vienna

Inneres Hochebenkar cirque/rock glacier

Permafrost studies

Haeberli and Patzelt (1982)

10th ICA Mountain Cartography Workshop

Viktor Kaufmann

Permafrost studies

- Krainer et al. (2015)
 - Geomorphology
 - Hydrology

Supporting maps

'Dritte Landesaufnahme' 1864-1887 (survey 1870-1873)

Graz

Supporting maps

Graz

Supporting maps

Measurement of flow velocity

- Terrestrial photogrammetry (Pillewizer, 1957; Vietories, 1972)
 - Surveys 1953/1955 by W. Pillewizer
 - frontal slope of the southern unit
 - mean annual flow velocity of 1.10 m a⁻¹
 - Surveys 1959/1966 by E. Dorrer
 - stable rock outcrop at 2800 m
 - no movements were detected
- Satellite radar interferometry (Rott & Siegl, 1999)
 - ERS-1/2 SAR images (two interferometric pairs in July/August 1995)
 - two separate moving units were detected; calculated displacements rates were several centimeters within the 35 days repeat cycle
- Aerial photogrammetry (Kaufmann & Ladstädter, 2002)
 - stringent photogrammetric approach
 - > time period 1953-1997 (max. flow velocity of 55/49 cm a^{-1})

10th ICA Mountain Cartography Workshop

Aerial surveys 1953-2010

Date	Flying height above ground (m)	Camera type	Scale/ GSD*	Remark		
31.8.1953	3250	analog	1 : 15,450	B&W		
7.10.1969	4430	analog	1 : 29,150	B&W		
7.9.1981	2930	analog	1 : 19,150	B&W		
10.10.1990	5240	analog	1 : 34,300	B&W, snow cover		
11.9.1997	5580	analog	1 : 36,550	B&W		
5.9.2003	5360	analog	1 : 17,650	color- positive		
11.9.2010	2810	digital	17* cm	R,G,B, NIR		
* GSD ground sampling distance						

10th ICA Mountain Cartography Workshop

Aerial surveys 1953/2003

Computer animation: Orthophotos 1953/2003

Data 1953: © BEV, Vienna Data 2003: © Land Tirol

10th ICA Mountain Cartography Workshop

Viktor Kaufmann

Digital elevation/surface models 1953-2010

Date	Grid spacing	Origin	Remark
31.8.1953	2.5 m x 2.5 m	photogrammetric mapping	DEM
11.9.1997	2.5 m x 2.5 m	photogrammetric mapping	DEM
23.8.2006	1 m x 1 m	ALS	DEM and DSM
9.10.2010	1 m x 1 m	ALS	DEM and DSM

Computer animation: DSM 2006/2010

10th ICA Mountain Cartography Workshop

Viktor Kaufmann

Measurement of flow velocity

- Image-based change detection
 - ImageStation of Intergraph (Orthophotos, DEMs)
 - Image matching (normalized cross-correlation coefficient)
 - Matlab-based toolbox
- DEM/DSM-based change detection
 - Height field matching (normalized cross-correlation coefficient)

in	Time Iterval	No. of valid measurements	Significance level+ of flow velocity (cm a ⁻¹)	Max. flow velocity (cm a⁻¹) – northern unit	Max. flow velocity (cm a ⁻¹) – southern unit
195	53-2010	12009	±2.5	36.4	36.7
195	53-1969	10625	±7.0	56.5	52.7
196	9-1981	10390	±10.0	34.0	37.8
198	81-1997	19456	±6.5	31.8	39.8
198	81-1990	9921	±8.5	26.2	39.5
1990	0*-1997	too few points			
199	97-2010	24293	±7.0	33.1	40.1
200	3-2010	29279	±10.0	32.9	46.7
200	6-2010*	10556	±8.5	24.6	57.2
+ 3 • 9 * 6	Bo snow cove evaluation	er of DSMs			
h ICA Mountair	A Mountain Cartography Workshop 20/28				

Horizontal flow velocity (DSM-based change detection)

on Graz

Surface elevation change

- The lower part of Inneres Hochebenkar cirque holds two independently moving parts, i.e., the northern and southern unit of Inneres Hochebenkar rock glacier.
- Highest flow velocities (1.10 m a⁻¹) of Inneres Hochebenkar rock glacier were measured by Pillewizer at the southern unit in the time period 1953-1955. In the overlapping observation period 1953-1969 the flow velocity has already decreased significantly. Maximum flow velocities hardly surpassed 50 cm a⁻¹. In the course of time the northern unit has reduced its speed more than the southern unit. A recent speed-up of the movement of the southern unit is speculative.
- Permafrost degradation/melt at Inneres Hochebenkar rock glacier is rather difficult to quantify.
- However, we found some strong indication that the lower (non-moving) end part connecting both moving units has undergone substantial surface lowering (2.0-4.7 m in 1953-1997).
- Dense image matching will allow the automatic generation of high-resolution DEMs. Thus, true orthophotos can be obtained more easily.
- The potential of the available multi-temporal ALS data could not be fully exploited because of obvious geometric problems in fusing both data sets.

Thank you for your attention!

V. Kaufmann, 10.8.2008