
1 INTRODUCTION

Creeping mountain permafrost, best represented by
so-called rock glaciers, is basically defined by its
material properties and thermal conditions, and by its
deformation. Knowledge about 3-dimensional surface
velocities contributes towards detecting and under-
standing the dynamic processes involved in permafrost
creep, and, generally, in landscape evolution in cold high
mountains (e.g. Kääb et al., 1997; Berthling et al., 1998;
Haeberli et al., 1998; Konrad et al., 1999; Frauenfelder
& Kääb, 2000; Isaksen et al., 2000; Kaufmann &
Ladstädter, 2000; Kääb et al., 2002).

Optimal investigation of permafrost creep requires:
(1) area-wide information on kinetics to account for
3-dimensional effects, (2) the application of precise
high-resolution techniques in view of the low defor-
mation rates, and (3) long-term monitoring for docu-
menting slow temporal changes at a sufficient level of
accuracy.

Recent advances, especially in image processing,
allow for measuring surface deformation of rock gla-
ciers with a resolution and accuracy which were not
known until present. As a consequence, better process
understanding and a number of new insights into rock
glacier development arise from such measurements.
The IPA/ICSI task force on rock glacier dynamics
recently addressed these advances. Here, we present a
short review on methods used so far for monitoring of
rock glacier surface deformation with high resolution
and precision. From selected examples in the European
Alps and on Svalbard, as well as from a number of

already published studies we identify the dynamic
processes involved in rock glacier development and
summarise general findings about these processes.
Thereby, conclusions made by earlier studies and
confirmed by our inter-comparison are also included.
Open questions in the field of rock glacier dynamics
terminate our contribution.

2 MONITORING TECHNIQUES

Both ground-based approaches, and air- and space-
borne ones have been applied hitherto for monitoring
rock glacier dynamics with high resolution. Ground-
based surveys use triangulation and laser ranging 
(e.g. Haeberli, 1985; Zick, 1996; Sloan & Dyke, 1998;
Koning & Smith, 1999; Konrad et al., 1999; Krainer &
Mostler, 2000) or satellite geodesy (e.g. GPS; Berthling
et al., 1998). Other methods for deformation measure-
ments, such as steel tapes or strain wires are seldom
used (e.g. White, 1987). Terrestrial laser scanning pro-
vides local digital terrain models (DTM) with very
high resolution and accuracy (Paar et al., 2001).

Photogrammetry represents the best established
remote sensing technology for rock glacier monitor-
ing. From repeated stereo-imagery the surface geome-
try (DTM), rock glacier thickness changes, and surface
displacements can be measured (e.g. Haeberli &
Schmid, 1988; Kääb et al., 1997; Kääb et al., 1998;
Kaufmann, 1998a; Kaufmann, 1998b). In particular,
recent digital image processing techniques have pro-
vided measurements of rock glacier dynamics with an
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accuracy and spatial resolution which had not been
attained before (Kääb & Vollmer, 2000; Kaufmann &
Ladstädter, 2003). Space-borne differential synthetic
aperture radar interferometry (DInSAR) is also able to
register rock glacier surface deformation with an accu-
racy of few mm to cm (Rott & Siegel, 1999; Kenyi &
Kaufmann, 2003; Nagel et al., 2001). Space-borne
optical remote sensing was not applicable to date for
rock glacier monitoring due to its limited resolution.
However, recent and upcoming highest resolution sen-
sors will allow to derive surface deformation from
optical space-imagery with an accuracy of �0.5–1 m
(Kääb, 2002). Airborne laser scanning will be a tool to
monitor rock glacier thickness changes with high res-
olution (Baltsavias et al., 2001).

The approaches used to analyse high-resolution
data of rock glacier surface dynamics range from
interpretation to numerical modelling. The deforma-
tion data itself provide creep velocity (Fig. 1) and
thickness changes (Fig. 2), and, thus, the degree of
activity. The general surface velocity field and its
local pattern show spatio-temporal coherence, vari-
abilities and interactions.

Spatial gradients can be calculated from the veloc-
ity field and zones of compressive, or extending flow,
respectively, can be derived (Kääb et al., 1997; Fig. 3).
Stream line interpolation allows for assessing the
particle paths on a rock glacier and their age (Kääb 
et al., 1997; Kääb et al., 1998). The kinematic boundary

condition at the surface is used to analyze the local
relation between permafrost creep, geometry change
and mass balance (Kääb et al., 1998; Kaufmann,
1998a). Spatial modeling of permafrost creep is mostly
based on the assumption of glacier-ice like behaviour
(Konrad et al., 1999). High-resolution velocity data
can thereby be used for estimation of creep-parameters
or model validation.
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Figure 1. Horizontal surface velocities on Muragl rock
glacier, Swiss Alps, measured for 1981–1994 from repeated
aerial photography. The bold dots indicate the location of the
surveying markers of Fig. 6. No. 202 is the rightmost, No. 208
the leftmost marker. Orthoimage based on photo 23.08.1994
– 0726 ©Swiss Federal Office of Cadastral Survey.
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Figure 2. Thickness changes of Muragl rock glacier meas-
ured for 1981–1994 from repeated aerial stereo-photography.
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Figure 3. Negative total of horizontal strain rates on
Muragl rock glacier for 1981–1994. For an incompressible
medium the given values would be equivalent to the verti-
cal surface strain rates.



3 DYNAMIC PROCESSES

The kinematic boundary condition on the surface pre-
dicts that the processes involved in geometric rock
glacier development are general mass advection, advec-
tion of topography by creep, 3-dimensional straining
and local mass changes from, for instance, ice melt or
refreezing (Kääb et al., 1998). The following processes
can be identified from high resolution measurements of
3-dimensional surface velocity fields:

(1) The fundamental process is permafrost creep.
Nearly all high-resolution studies on the deformation
of (visually) active rock glaciers were able to detect
creep. Whereas maximum speeds were found to be in
the order of several m a�1 (Figs 1 and 4), the detection
of minimum speeds seems mostly restricted by the
available measurement accuracy (Fig. 5). Recent high-
precision studies using GPS (Berthling et al., 1998) 
or DInSAR (Kenyi & Kaufmann, 2003) detected
movement rates of a few cm a�1 to mm a�1, suggesting
a continuous transition from stable slopes to mountain
permafrost creep. Inter-comparison of available
studies suggests that differences in slope, thickness,
temperature, or internal composition are not sufficient
to explain individual differences in speed. On the other
hand, there are clear indications that all these factors
play a major role for the deformation rate: within a sin-
gle rock-glacier speed seems often related to the slope
pattern (Figs 1 and 4; Konrad et al., 1999). ‘Cold’polar
rock glaciers seem in general to creep more slowly
than ‘warm’ Alpine ones (Fig. 5; Kääb et al., 2002).
Smaller thickness of the deforming layer might explain

the generally lower speed at the rock-glacier root zones
and margins (Fig. 1; Kaufmann, 1998a; Kaufmann &
Ladstädter, 2003). The resulting surface speed is con-
sidered to be a combination of factors. Separation of
individual influences is difficult, especially due to the
lack of knowledge on the internal structure (thickness,
composition).

(2) The advance of an entire rock glacier or overrid-
ing of individual flow lobes causes zonal thickening
(Kääb et al., 1997; Kääb et al., 1998; Kääb, 2000).
From elevation-change data for Muragl rock glacier
(Fig. 2) it can be seen that surface heaving of several
cm a�1 occurs at the front of individual creep lobes.
Similar rates of heaving can be observed at the front of
the main rock glacier (2500 m a.s.l), but also at the front
of the adjacent rock glacier to the East (2640 m a.s.l).

(3) Analogously, the advection of surface micro-
topography by creep may result in a pattern of local
positive and negative thickness changes. Heaving 
patterns in front of individual transverse ridges and
corresponding lowering patterns at their rear were
observed from high-resolution studies (Kääb et al.,
1998; Kääb & Vollmer, 2000). Comparing the
observed vertical rates with the ones calculated from
creep speed and surface slope clearly confirms that
this advection process is taking place.

(4) 3-dimensional straining (compression, or exten-
sion, respectively) by spatial gradients of the creep
field may lead to local heaving or thinning. Horizontal
compression is expected to cause vertical extension,
i.e. by surface heaving, and vice-versa. For an incom-
pressible medium like pure ice both amounts would
strictly equal. For ice-rock mixtures the assumption of
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Figure 4. Horizontal surface displacements on a section of
the lowermost part of Outer Hochebenkar rock glacier,
Austrian Alps, for 1971–1977. The terminus of the rock gla-
cier showed a creep instability indicated by missing targets
for displacement measurements, and by crevasse-like trans-
verse ruptures. After Kaufmann & Ladstädter (2003).

Figure 5. Horizontal surface displacements on
Brøggerbreen rock glacier, Svalbard, measured from 1971
and 1995 aerial imagery. Orthoimage of photo S90–6295 
©Norsk Polarinstitutt. After Kääb et al. (2002).



incompressibility might certainly be questionable,
especially for short time scales. Considering (super-)
saturation with ice, the above relation between hori-
zontal and vertical strain rates will, however, qualita-
tively apply also for rock glaciers over long time
scales. Figure 3 shows the negative total of horizontal
strain rates derived from the velocity field (Fig. 1).
Comparing the pattern of the computed strain rates
(Fig. 3) with the pattern of observed thickness
changes (Fig. 2) clearly suggests the described rela-
tion. The same process could be also detected in other
studies (Kääb et al., 1998; Kääb & Vollmer, 2000).

(5) General thaw settlement and frost heave as an
expression of climate forcing affects large parts of a
rock glacier in a similar way. The degree of such heav-
ing or settlement may also reflect the internal composi-
tion. Thickness loss due to ice melt may be significant
for zones in the vicinity of perennial ice patches (e.g.
Fig. 2, top) or for dead ice remains (Kääb et al., 1997).
Such pronounced mass losses might, therefore, rather
be an expression of missing thermal equilibrium (active
layer depth � debris cover thickness) than a climate
signal. In fact, for most monitoring series of rock-
glacier mass-changes no clear signal of overall mass
gain or loss could be observed. Only two studies
showed clearly an overall mass loss by few cm a�1

(Kääb et al., 1998; Kaufmann & Ladstädter, 2003).
Whilst the first group of processes above considers

the fundamental dynamic processes involved in
steady-state permafrost creep, the following group of
processes covers spatial and temporal variations:

(6) Transverse gradients in the horizontal velocities
result in a rotational component of the strain rates and
to horizontal shearing. For high rates such shearing
may have its expression in a disturbed surface topo-
graphy (Fig. 4 middle; Kääb et al., 1997).

(7) Little is known about temporal changes of rock
glacier creep. In this paragraph, we do not consider
velocity variations in the scale of millennia or cen-
turies, although some velocity fields clearly indicate
rock glaciers or parts of them which must have shown
a degree of activity other than today (e.g. inactive
layer at the northern margin of Muragl rock glacier
(Fig. 1) overridden by an active lobe; Frauenfelder &
Kääb, 2000). Monitoring series of rock glacier speed
indicate both cyclic and non-cyclic temporal speed
variations. Cyclic variations have been observed for
seasonal velocity variations (e.g. Fig. 6; Haeberli,
1985). Continuous pluriannual changes in speed
might be a result of external (climate?) forcing (Zick,
1996; Kääb et al., 1997; Kääb & Frauenfelder, 2001;
Schneider, 2001). So far, monitoring of rock-glacier
speed-variations revealed several possible causes
mostly connected to thermal impacts.

(8) Temporal discontinuities in rock glacier creep can
seldom be observed. The slide of the lowermost part of

Outer Hochebenkar rock glacier, Austria, (Fig. 4) rep-
resents a rare example for such creep instability accom-
panied by transverse surface ruptures (Kaufmann &
Ladstädter, 2003).

(9) Locally varying permafrost conditions might
lead to differential thaw settlement or frost heave as,
for instance, thermokarst processes (Kääb &
Haeberli, 2001). According to the available monitor-
ing series such small-scale differential melting or
frost heave is an exception compared to (5) and repre-
sents rather a disturbance of the general thermal equi-
librium (cf. (6)) The only situation of common
differential melt on rock glaciers might be at the front
where the ice content melts out (Kääb et al., 1997).

All the above dynamic processes overlay each other
so that a clear identification from individual monitor-
ing series is difficult. Inter-comparison of a number of
series, however, clearly confirms their (variable) exis-
tence in nature.

4 GENERAL CHARACTERISTICS

Analysing and inter-comparing high-resolution surface
velocity fields allows for identifying some general
characteristics of creeping mountain permafrost:

The typical smooth and continuous morphology of
rock glaciers points to the absence of high-frequency
spatial and temporal speed variations, and to the
absence of pronounced differential frost heave and
melting. Thus, the smooth topography compared to
debris-covered glaciers or dead-ice remains is an
expression of the thermally-induced inertia of rock
glaciers. This high inertia against thermal forcing is
also manifested in low vertical change rates, and even
lower changes in overall mass.

The evolution of the rock glacier geometry is due to
cumulative deformation and 3-dimensional straining,
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Figure 6. Seasonal velocity variations on Muragl rock gla-
cier, Swiss Alps, measured from repeated terrestrial survey-
ing. For location of the markers see Figure 1. The thin line
indicates the temperature measured by a miniature logger at
approximately 0.5 m depth. The rock glacier speed varied
from close to zero to up to 1 m a�1 within a few months and
with some delay to surface temperature variations.



as well as frost heave and thaw settlement. A climate
signal can not be deduced from monitoring surface
geometry without considering 3-dimensional dynam-
ics. The rates from such straining or mass advection
may exceed the rates expected from mass balance and
their changes. Whereas the evolution of transverse
ridges and furrows on rock glaciers is not clear, some
spatial correlation between zones of compressive creep
and zones of ridge-topography can be observed (cf.
Figs 3, 4 and 7) suggesting some influence from 
3-dimensional straining (Kääb et al., 1998).

The surface flow fields with magnitudes of up to
several m a�1 – better known than for many other
slope movements – indicate clearly a both spatially
and temporally continuous deformation pointing to
the presence of stress transferring ground ice. High-
resolution velocity fields (Fig. 4; Kääb & Vollmer,
2000) show that the surface deformation of rock gla-
ciers is highly coherent even at the scale of individual
rocks, and that it is not only the sum of individually
displacing or sliding particles.

The range of seasonal to pluriannual speed varia-
tions can reach up to several tens of percents (Fig. 6;
Zick, 1996; Schneider, 2001).

Stream line interpolations (e.g. Fig. 7) or rougher age
assessments from velocity-length ratios indicate that
the age of rock glaciers has to be counted in millennia

rather than in shorter time scales (Kääb et al., 1997;
Kääb et al., 1998; Frauenfelder & Kääb, 2000; Berthling,
2001; Kääb et al., 2002). Such age estimates are clearly
confirmed by other dating methods (e.g. Sloan & Dyke,
1998; Haeberli et al., 1999; cf. also this issue) and by
comparing rock glacier masses with headwall weather-
ing rates (Haeberli et al., 1999; Berthling, 2001; Kääb
et al., 2002). The correlation between the actual velocity
field (e.g. speed, creep direction, strain rates, stream
lines, isochrones), and the actual 3-dimensional geom-
etry indicates that most active rock glaciers observed
have not undergone drastic dynamic changes in the past.

5 CONCLUSIONS AND PERSPECTIVES

The technology applied for monitoring rock glacier
dynamics is relatively far developed. Research deficits
rather lie in the availability of the techniques and in
systematic monitoring strategies. Current research
tendencies point towards an increase in accuracy and
tempo-spatial resolution, towards an increase in meas-
urement automation, and towards enhanced applica-
tion of space-borne techniques in order to cover
remote areas too.

The knowledge of geometry and surface kinetics 
of rock glaciers is comparably detailed, whereas the
basic understanding of the underlying processes is by
far not adequate compared to the available data. This
discrepancy might most likely be due to the fast recent
development of monitoring technologies. The current
lack of process understanding implies flow laws or creep
mechanisms, but also speed variations, sensitivity to
external forcing, rock glacier advance mechanisms, 
and the development of (and implications from) micro-
topography. A larger number of systematic globally dis-
tributed monitoring series could substantially help to
extract the basic processes of rock glacier creep from
the large dynamic variability of individual examples.
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